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Abstract

Background

Resistance to commonly used antimicrobials is a growing concern in both human and veteri-

nary medicine. Understanding the temporal changes in the burden of the problem and identi-

fying its determinants is important for guiding control efforts. Therefore, the objective of this

study was to investigate temporal patterns and predictors of antimicrobial resistance among

Staphylococcus spp. isolated from canine specimens submitted to the University of Ken-

tucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009.

Methods

Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibil-

ity using the disk diffusion method at the UKVDL between 1993 and 2009 were included in

the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armi-

tage trend test. Logistic regression models were used to investigate predictors of antimicro-

bial resistance (AMR) and multidrug resistance (MDR).

Results

A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG),

18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were

S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised

0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and

25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S.

aureus (80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were
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observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12).

Overall, AMR and MDR showed significant (p<0.001) decreasing temporal trends. Signifi-

cant temporal trends (both increasing and decreasing) were observed among 12 of the 16

antimicrobials covering 6 of the 9 drug classes assessed. Thus, significant increasing tem-

poral trends in resistance were observed to β-lactams (p<0.001) (oxacillin, amoxicillin-clavu-

lanate, cephalothin, and penicillin (p = 0.024)), aminoglycosides (p<0.001) (gentamicin, and

neomycin), bacitracin (p<0.001), and enrofloxacin (p<0.001). In contrast, sulfonamide

(p<0.001) (sulfadiazin) and tetracycline (p = 0.010) resistant isolates showed significant

decreasing temporal trends in AMR. Staphylococcus spp., geographic region, and speci-

men source were significant predictors of both AMR and MDR.

Conclusions

Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial

agents and the increasing temporal trends are concerning. Therefore, continued monitoring

of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local

factors responsible for the observed geographic differences in risk of both AMR and MDR.

Introduction

Staphylococcus spp. encompass a diverse group of Gram-positive, non-motile facultative anaer-

obic cocci that are classified into 3 categories based on production of coagulase: coagulase-pos-

itive (CoPS), coagulase-negative (CoNS), and coagulase-variable [1]. S. hyicus, for instance, is a

coagulase-variable species whereas S. aureus and S. intermedius group (SIG), which includes S.

pseudintermedius, are coagulase-positive [2–5]. S. pseudintermedius, the primary staphylococ-

cal pathogen of dogs, is an opportunistic pathogen routinely found on the skin and mucosal

surfaces of dogs [2,6,7]. The non-coagulase producing Staphylococcus include numerous spe-

cies such as S. epidermidis and S. haemolyticus and are thought to be less or non-pathogenic

commensals [1]. However, there is some debate among researchers on the pathogenicity of

CoNS, with some studies suggesting that CoNS may play a role in canine dermatitis [8] and

nosocomial infections in humans [1].

Resistance, especially acquired multi-drug resistance of CoPS, to commonly used antimi-

crobials is a growing concern in both human and animal medicine [9,10]. Methicillin-resistant

S. pseudintermedius (MRSP) infections, in particular, are of growing concern in small animal

medicine [11] as they have been reported to play a significant role in skin and surgical site

infections [11,12] and lead to significant treatment challenges [6]. Moreover, dogs represent a

potential source of methicillin resistant Staphylococcus aureus (MRSA) infections or re-infec-

tions for humans [13,14] In fact, there is evidence of transfer of resistant organisms between

animals and people [15] implying that dogs are of significant public health importance because

of their close companionship with people. In the United States, for instance, up to 36.5% (43

million) of households own a dog [16].

Use of antimicrobials is one of the contributing factors to the development of antimicrobial

resistance [17] and some authors have suggested that over prescription of antimicrobials may

be responsible for the increasing levels of antimicrobial resistance over time [8,18]. Unfortu-

nately, regulatory oversight of antimicrobial use in animals in the United States has focused

mainly on food animal production systems with little attention given to their use in

Antimicrobial resistance among canine Staphylococcus spp. isolates in Kentucky
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companion animals [19]. Most of what is known regarding use of antimicrobials in dogs have

been from studies of limited populations. For example, a study by Baker and colleagues, evalu-

ated antimicrobial usage in 435 dogs admitted to a veterinary teaching hospital and found that

55.6% of the dogs had received at least 1 antimicrobial treatment in the previous 12 months

while 39.4% had received� 2 antimicrobial treatments [20]. The study also reported that

72.7% of the dogs received β-lactams (cephalexin), 32.2% received aminoglycosides (neomycin

and gentamicin), and 23.1% received a fluoroquinolone (enrofloxacin) [20].

Understanding not only the usage patterns of antimicrobials in dogs but also the patterns of

antimicrobial resistance and temporal changes is critical for guiding efforts to curb the prob-

lem. High levels of antimicrobial resistance to at least one antimicrobial among clinical cases

of canine Staphylococcus infections have been reported in a number of geographical locations:

88% in Poland [8], 90.9% in Canada [21], and 80.5% in South Africa [22]. Of greater concern

are reports of multidrug resistance among Staphylococcus isolates in both healthy and clinical

cases: 24.5% in Switzerland [23] to 28.7% in South Africa [22] and 34% in the UK [24]. High

levels of Staphylococcus spp. resistance to β-lactam antimicrobials and lincosamides have been

reported by a number of studies [22,25–27] implying that these drugs can no longer be used in

the treatment of Staphylococcus infections in the concerned geographic areas. With respect to

the temporal changes in levels of antimicrobial resistance, the findings are less clear. Some

studies have reported no significant temporal changes, others have reported significant

increases while others have reported decreasing temporal trends. For instance, a Canadian

study by Prescott et al [28] reported no significant temporal changes of S. aureus resistance to

fluoroquinolones in dogs treated for urinary tract infections at a veterinary teaching hospital.

In contrast, increasing temporal trends in resistance to trimethoprim-sulphamethoxazole

among S. pseudintermedius isolates were reported in a study of healthy and clinical canine pyo-

derma cases in France [18]. While, a South African study of dogs treated at a veterinary teach-

ing hospital [22] found both significant increasing temporal trends (e.g. enrofloxacin,

trimethoprim-sulphamethoxazole, and clindamycin) and significant decreasing temporal

trends (e.g. doxycycline, kanamycin, and amoxicillin) in levels of antimicrobial resistance.

It is important to understand not only the burden of antimicrobial resistance but also pre-

dictors and temporal changes in resistance to specific drugs and drug classes to better guide

treatment decisions as well as efforts to address the problem. Therefore, the objective of this

study was to investigate temporal patterns and predictors of antimicrobial resistance among

Staphylococcus spp. isolated from dog specimens submitted to the University of Kentucky Vet-

erinary Diagnostic Laboratory between 1993 and 2009.

Methods

Ethics approval

This study was approved by the University of Tennessee Institutional Animal Care & Use

Committee (IACUC). The study used retrospective laboratory records and did not involve ani-

mals. All data were handled in compliance with relevant guidelines. No field studies or experi-

ments were conducted as part of this study and hence no informed consent was required.

Data source

Laboratory records of 4,972 dog specimens submitted to the University of Kentucky Veteri-

nary Diagnostic Laboratory (UKVDL) between January 1993 and July 2009 were included in

the study. The records included antimicrobial sensitivity test results, animal demographic

information, and geographic information of specimen origin. The following variables were

extracted for each case: submission date, accession number, name, city, county, state, zip code,

Antimicrobial resistance among canine Staphylococcus spp. isolates in Kentucky
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breed, sex, and age of the dog as well as specimen source and Staphylococcus species isolated.

The criteria used for reporting a microorganism was the isolation of the microorganism in

pure culture or significant numbers from specimens (as the predominate microorganism). No

duplicate specimens from a single patient were identified. For the isolation of bacteria, speci-

mens were cultured on a Tryptic Soy Agar (TSA) base with 5% horse blood agar and eosin

methylene blue agar plates at 37˚C in 5–10% CO2, for a minimum of 24 hours. If the specimen

was from a likely contaminated site such as nasal swab, a Columbia colistin and nalidixic acid

(CNA) plate with blood was also inoculated. The CNA plates containing colistin (10 mg/L)

and nalidixic acid (10 mg/L) only inhibit gram negative bacteria and therefore should not

influence resistance patterns of Staphylococcus spp (which is a gram positive organism). The

plates were examined for pathogenic bacteria and were incubated for an additional 24 hours at

37˚C in aerobic incubators and examined again for pathogenic bacteria. Staphylococcus isolates

were identified by using colony morphology, dark-field examination, β-hemolysis on the

blood agar and CNA plates, and conventional biochemical tests, including coagulase, maltose,

mannitol, and trehalose (Table 1). Additionally, selective and differential plates with antibiotics

and indicator were used to differentiate between S. aureus and S. hyicus.
Five Staphylococcus groups were identified: Coagulase-negative staphylococci (CoNS), S.

aureus, S. hyicus, S. intermedius group (SIG), and S. schleiferi subsp. coagulans [29–31]. The

laboratory did not specify coagulase negative species or differentiate between S. intermedius
and S. pseudintermedius. However, since S. pseudintermedius is the most common Staphylococ-
cus spp. of dogs, the majority of SIG isolates are likely S. pseudintermedius.

For antimicrobial susceptibility testing, Staphylococcus isolates were subjected to a panel of

16 drugs using the Kirby-Bauer disc diffusion test. The laboratory followed testing procedures

and classification criteria that were in use during the testing period by the Clinical and Labora-

tory Standards Institute (CLSI) formerly called the National Committee for Clinical Labora-

tory Standards (NCCLS) [29,32–35] to determine the susceptibility of the isolates. Sizes of

zones of susceptible and resistant isolates, in millimeters, were as follows: amoxicillin-clavula-

nic acid (�20,�19), bacitracin (�13,�8), cephalothin (�18,�14), enrofloxacin (�21,�17),

erythromycin (�21,�15), gentamicin (�15,�12), kanamycin (�18,�13), lincomycin (�19,

�15), neomycin (�17,�12), novobiocin (�17,�14), oxacillin (�13,�10), penicillin (�28,

�19), streptomycin (�15,�11), sulfadiazine (�17,�12), sulfamethoxazole-trimethoprim

(�16,�10), and tetracycline (�23,�18). Isolates were classified as susceptible, moderately

susceptible, intermediate, or resistant based on the above classification procedure [29,32–35].

The World Health Organization and National Committee for Clinical Laboratory Standards

Table 1. The testing scheme used for differentiation of veterinary pathogenic Staphyloccoccus spp.

Organism Biochemical Reactions

Coagulase Maltose Mannitol Trehalose

S. aureus + + + +

S. schleiferi ss coagulans + - + variable

S. lutrae + + variable +

S. intermedius + weak variable +

S. hyicus ss hyicus� +/- - - +

S. delphini� + + + (+)

Staphyloccous coagulase negative - - variable variable

�Interpretation note: If Staphylococcus isolate is negative for tube coagulase test, it is reported as “coagulase negative Staphylococcus species”. Any clot (soft clot) is

considered a positive reaction.

https://doi.org/10.1371/journal.pone.0200719.t001
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defined “moderately susceptible" isolates as those that can be treated using a higher dosage of

the antimicrobial in question whereas those listed as “intermediate” should not be dosed at

higher levels due to toxicity concerns [34,36].

Data preparation

Data cleaning and preparation were performed in Matlab [37] and Microsoft Excel [38].

Counties were assigned to eight (8) regions based on the Centers for Medicare and Medicaid

Services (CMS) rating areas [39] (Fig 1). These regions are classified based on Metropolitan

(core urban area of 50,000 or more) and Micropolitan (urban area of 10,000 but less than

50,000) Statistical Areas (MSAs) plus surrounding counties that were determined to have

socioeconomic integration to the MSA [39,40]. Region 8 had the highest percentage (29%) of

the population living below the poverty level in 1999 (based on 2000 decennial census) and

region 6 had the lowest (9%). The percentages of the population living below poverty level for

regions 1, 2, 3, 4, 5 and 7 were 15%, 15%, 12%, 19% 14% and 20%, respectively. Cases were

assigned to one of the eight regions based on their counties of origin.

Dog breeds were re-coded into groups based on the American Kennel Club (AKC) group

classification [41]. Mixed breeds were separated into a non-AKC group designated as mixed

(n = 900). Age was categorized into 5 categories: < 2 years, 2–4 years, 4–6 years, 6–8 years,

and> 8 years. Sex was defined into 2 categories male and female. In situations where sex was

listed by sterilization status (i.e. spayed, neutered, or castrated), it was placed in the appropriate

sex category. Specimen source was classified into the following 5 categories: (1) ears, (2) skin,

hair, and nails, (3) urine and bladder, (4) mucosal surfaces and (5) “all others”. The “all others”

category included non-specific specimen submissions and those with small specimen sizes.

Mucosal surfaces included nasal, oral, conjunctival, and vaginal swabs. Antimicrobial suscepti-

bility test results were re-classified as susceptible or resistant. Those listed as moderately sus-

ceptible (n = 2,666) or intermediate (n = 1) were re-coded as resistant. Antimicrobials were

Fig 1. Kentucky regions, based on Centers for Medicare and Medicaid Rating Areas [39], investigated for differences in antimicrobial resistance among canine

specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory.

https://doi.org/10.1371/journal.pone.0200719.g001
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further classified into their respective drug classes. Two variables were created to identify anti-

microbial resistance status: (1) antimicrobial resistance (AMR) defined as resistance to at least

one antimicrobial; and (2) multidrug resistance (MDR) defined as resistance to at least one

antimicrobial in 3 or more antimicrobial classes [42]. Extensive drug resistance (XDR) was

defined as drug resistance to at least one antimicrobial in all but one or two classes [42].

Statistical analysis

All statistical analyses were performed using IBM SPSS Statistics 24 [43]. Crude and factor-

specific percentages of AMR and MDR isolates were computed. The factors considered (sus-

pected categorical predictors of AMR and MDR) were year, Staphylococcus spp., geographic

region, dog breed, age group, sex, and specimen source. Cochran-Armitage trend test was

used to assess temporal trends in AMR and MDR. Statistical significance was assessed using an

α of 0.05.

The conceptual model used to guide investigation of the predictors of AMR and MDR is

shown in Fig 2. Predictors of AMR and MDR were assessed for significant associations with

the outcomes of interest (AMR and MDR) in two steps: (1) univariable regression model for

each predictor variable listed above were fit to the data and the variable assessed for unadjusted

association (using a relaxed α of 0.15) with the outcome variable (either AMR or MDR); and

(2) multivariable logistic regression model. Predictor variables with a p�0.15 in step 1 were

Fig 2. Conceptual model used to guide investigation of predictors of antimicrobial resistance and multidrug resistance among Staphylococcus from canine

specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory, 1993–2009.

https://doi.org/10.1371/journal.pone.0200719.g002
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included in step 2. The multivariable logistic regression model was built using a manual back-

wards elimination approach. Only predictor variables that were statistically significant at

p�0.05 were included in the final main effects multivariable logistic regression model. Con-

founding was assessed by comparing the change in the regression coefficients of the variables

in the model with and without the suspected confounder. A variable was considered a con-

founder and retained in the final model if there was at least a 20% change in the regression

coefficients of any of the other variables already in the model. Two-way interaction terms of

variables in the final main-effects model were assessed for statistical significance. Odds ratios

and their corresponding 95% confidence intervals were calculated for all variables in the final

model. Hosmer-Lemeshow goodness of fit test was used to assess the final model.

Results

A total of 4,972 isolates were included in the final analysis for antimicrobial resistance. Of

these 2,667 antimicrobial susceptibility test results (moderately susceptible [n = 2,666] and

intermediate [n = 1]) were re-classified as resistant. Of the assessed isolates, 68.1% (3,388/

4,972) were SIG, 18.3% (907/4,972) were CoNS, 7.5% (375/4,972) were S. aureus, 5.8% (290/

4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the iso-

lates (Table 2). Assessment of the distribution of Staphylococcus spp. by specimen source

revealed that most of the SIG isolates were from skin, hair, and nail specimens (54.1%) fol-

lowed by ear specimens (24.9%) (Table 2). The most common specimen source was skin, hair

and nails (54.1%) followed by ear (24.9%) (Table 2).

The overall percentage of antimicrobial resistant (AMR) isolates was 77.2% (3,840/4972)

(Table 3). There was a significant (p<0.001) unadjusted association between Staphylococcus
spp. and AMR with CoNS (81.3%; 737/907) having the highest level followed by S. aureus
(80.5%; 302/375) and SIG (77.6%; 2629/3388). S. hyicus (57.9%; 168/290) and S. schleiferi subsp.

coagulans (33.3%; 4/12) had the lowest levels of antimicrobial resistance. The overall level of

multidrug resistance (MDR) was 25.6% (Table 3). There was also a significant (p<0.001) unad-

justed association between Staphylococcus spp. and MDR with the highest levels being observed

in S. aureus (30.1%; 113/375), CoNS (29.4%; 267/907), and SIG 25.4%; (860/3388). The lowest

levels of MDR were observed in S. hyicus (11.7%; 34/290) and S. schleiferi subsp. coagulans
(8.3%; 1/12). Overall, 22.8% (1,132/4,972) of the Staphylococcous spp. tested showed no resis-

tance to any of the antimicrobials evaluated (Table 3). However, a small percentage showed

extensive drug resistance (XDR) with 0.1% (4/4,972) showing resistance to 13 of the 16 antimi-

crobials tested (Table 3). A small percentage (1.1% [53/4,972]) of Staphylococcus isolates (that

Table 2. Specimen sources and Staphylococcus spp. from canine specimens submitted to the UKVDL1, 1993–2009.

Species Ear Skin, Hair, & Nails Urine & Bladder Mucosal Surfaces All Others Total

% (#) % (#) % (#) % (#) % (#) % (#)

S. aureus 20.5 (77) 48.5 (182) 10.7 (40) 9.3 (35) 10.9 (41) 7.5 (375)

SIG2 25.0 (848) 55.8 (1,889) 7.3 (246) 3.9 (131) 8.1 (274) 68.21(3,388)

S. schleiferi subsp coagulans 58.3 (7) 41.7 (5) - - - 0.2 (12)

CoNS3 21.8 (198) 53.4 (484) 6.8 (62) 5.5 (50) 12.5 (113) 18.3 (907)

S. hyicus 37.9 (110) 44.8 (130) 6.6 (19) 2.8 (8) 7.9 (23) 5.8 (290)

Total 24.9 (1,240) 54.1 (2,690) 7.4 (367) 4.5 (224) 9.1 (451) 4,972

1University of Kentucky Veterinary Diagnostic Laboratory
2SIG = S. intermedius group
3CoNS = Coagulase negative Staphylococcus

https://doi.org/10.1371/journal.pone.0200719.t002
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included all Staphylococcous spp. except S. schleiferi subsp. coagulans) showed resistance to 9

antimicrobials (Table 3).

A total of 4,944 isolates were assessed for both oxacillin and lincomycin resistance. Co-resis-

tance to oxacillin was assessed because oxacillin resistance is representative of methicillin resis-

tance and is of clinical importance. Of the isolates assessed for co-resistance to oxacillin and

lincomycon, 1.6% (79/4,944) were resistant to both, 6.5% (320/4,944) were susceptible to oxa-

cillin but resistant to lincomycin, and 2.5% (122/4,944) were resistant to oxacillin but suscepti-

ble to lincomycin while 89.5% (4,423/4,944) were susceptible to both. Similarly, a total of 4,848

isolates were assessed for both oxacillin and enrofloxacin resistance. Only 1.3% (61/4,848) of

these were resistant to both, 0.7% (35/4,848) were susceptible to oxacillin but resistant to enro-

floxacin, 2.8% (136/4,848) were resistant to oxacillin but susceptible to enrofloxacin while

95.2% (4,616/4,848) were susceptible to both. When distribution of oxacillin resistance was

assessed by species of Staphylococcus, resistance to only oxacillin was most common among

CoNS (3.8%) followed by S. hyicus (1.7%) isolates (Table 4). CoNS had the highest (7.9%) pro-

portion of isolates that were both oxacillin resistant and MDR. This was followed by S. aureus
(7.0%) (Table 4). Antimicrobial resistance profiles of all isolates that were resistant to at least

one antimicrobial is presented in the supporting/supplementary table (S1 Table).

Temporal patterns of resistance

Significant temporal trends were observed among 12 of the 16 antimicrobials covering 6 of the

9 drug classes assessed (Table 5). Isolates showed significant (p<0.05) increasing temporal

Table 3. Antimicrobial resistance of Staphylococcus spp. from canine specimens submitted to the UKVDL1, 1993–2009.

Number of

drug isolates S. aureus SIG2 S. schleiferi CoNS3 S. hyicus Total

resistant to % (#) % (#) % (#) % (#) % (#) % (#)

0 19.5 (73) 22.4 (759) 66.7 (8) 18.7 (170) 42.1 (122) 22.8 (1,132)

1 26.4 (99) 26.5 (899) 8.3 (1) 26.1 (237) 26.2 (76) 26.4 (1,312)

2 20.0 (75) 20.8 (706) 16.7 (2) 21.6 (196) 17.6 (51) 20.7 (1,030)

3 43 (11.5) 14.6 (495) 8.3 (1) 13.5 (122) 4.8 (14) 13.6 (675)

4 7.5 (28) 6.3 (213) - 6.8 (62) 2.8 (8) 6.3 (311)

5 3.7 (14) 1.6 (55) - 3.1 (28) 2.8 (8) 2.1 (105)

6 2.1 (8) 2.2 (74) - 2.4 (22) 2.1 (6) 2.2 (110)

7 1.1 (4) 2.4 (82) - 2.3 (21) 1.0 (3) 2.2 (110)

8 2.1 (8) 1.3 (44) - 3.0 (27) 0.3 (1) 1.6 (80)

9 3.2 (12) 0.9 (31) - 1.0 (9) 0.3 (1) 1.1 (53)

10 1.1 (4) 0.4 (12) - 0.7 (6) - 0.4 (22)

11 1.1 (4) 0.4 (12) - 0.4 (4) - 0.4 (20)

12 0.5 (2) 0.1 (4) - 0.2 (2) - 0.2 (8)

13 0.3 (1) 0.1 (2) - 0.1 (1) 0.1 (4)

Total AMR4 80.5 (302/375) 77.6 (2,629/3,388) 33.3 (4/12) 81.3 (737/907) 57.9 (168/290) 77.2 (3,840/4,972)

Total MDR5 30.1 (113/375) 25.4 (860/3,388) 8.3 (1/12) 29.4 (267/907) 11.7 (34/290) 25.6 (1,275/4,972)

1UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
2SIG = S. intermedius Group
3CoNS = Coagulase negative Staphylococcus
4AMR = Antimicrobial Resistance
5MDR = Multiple drug resistance

https://doi.org/10.1371/journal.pone.0200719.t003
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trends in resistance to amoxicillin-clavulanic acid, cephalothin, oxacillin, and penicillin

(Table 5 and Fig 3). Among the β-lactams, isolates exhibited highest levels of resistance to

penicillin which ranged from 69.7% (99/142) in 2007 to 54.2% (123/227) in 2001 (Table 5 and

Fig 3).

There was significant (p<0.001) increasing temporal trend in resistance to 3 of the 4 amino-

glycosides tested (Table 5 and Fig 4). Overall 14.9% of the 1,231 specimens tested for strepto-

mycin susceptibility were resistant. However, the annual changes in resistance to streptomycin

from 1997 to 2009 were based on very small numbers (< 5) and hence have been suppressed

on Table 5. Overall, 3.3% and 5.9% of the 4,965 isolates tested showed resistance to gentamicin

and neomycin, respectively.

Only one antimicrobial in each of the fluoroquinolone and polypeptide classes were tested.

Both enrofloxacin (p<0.001) and bacitracin (p = 0.002) showed significant temporal trends

(Table 5 and Fig 4). Enrofloxacin resistant isolates showed a significant increasing temporal

trend. Overall resistance was 2.0% (96/4856) but ranged from 0.2% (1/402) in 1995 to 8.2%

(13/158) in 2006. Bacitracin resistant isolates showed a decreasing temporal trend until 1999

(2.2% [7/321]) with a major spike in 2002 (16.7% [38/227]) and then decreased again in 2003

(3.7% [9/243]).

The sulfadiazin (p<0.001) and tetracycline (p = 0.010) antimicrobial classes both showed

moderately high levels of resistance with a significant overall decreasing temporal trend

(Table 5 and Fig 5). Overall Staphylococcus resistance to sulfadiazin was 53.4% (2,648/4,962)

but ranged from 34.4% (88/256) in 2000 to 74.4% (444/597) in 1993. The overall level of resis-

tance to tetracycline was 25.1% (1,241/4,941) and ranged from 19.1% (29/152) in 2005 to

31.8% (190/598) in 1993. Finally, there was a significant decreasing temporal trend in overall

AMR and MDR (Table 5 and Fig 5).

Predictors of AMR and MDR

Sample distribution across the predictor variables assessed were: Staphlylococcus spp.

(n = 4,972), geographic region (n = 4,972), AKC breed categories (n = 4,275), age groups

(3,857), sex (n = 4,780), and specimen source (n = 4,972). A total of 697 records had missing

breed information while 192 and 1,115 records had missing sex and age group information,

respectively. One case was also eliminated from age category due to an implausible age desig-

nation (85 years). Based on an α = 0.15, there were significant unadjusted associations between

Table 4. Oxacillin-resistant and MDR1 Staphylococcus spp. from canine specimens submitted to the UKVDL2,

1993–2009.

Species Oxacillin only Oxacillin and MDR1

% (frequency) % (frequency)

S. aureus 0 (0/374) 7.0 (26/374)

SIG3 0.52 (16/3,381) 1.3 (45/3,381)

S. schleiferi subsp coagulans 0 (0/12) -

CoNS4 3.8 (34/906) 7.9 (72/906)

S. hyicus 1.7 (5/289) 1.0 (3/289)

Total 1.1 (55/4,962) 2.9 (146/4,962)

1MDR = Multiple drug resistance
2UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
3SIG = S. intermedius group
4CoNS = Coagulase negative Staphylococcus

https://doi.org/10.1371/journal.pone.0200719.t004
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AMR and 5 of the 6 potential predictor variables investigated in the unadjusted logistic mod-

els: Staphylococcus spp. (p<0.001), geographic region (p<0.001), AKC breed categories (p =

0.015), age group (p = 0.002), and specimen source (p<0.001) (Table 6). Based on the final

multiple logistic regression model AMR had significant association with Staphylococcus spp.

(p<0.001), geographic region (p = 0.001), and specimen source (p<0.001) (Table 7). The odds

of AMR were significantly higher among S. aureus (OR: 2.728, 95% CI: 1.923–3.872), SIG (OR:

2.422, 95% CI: 1.887–3.109), and CoNS (OR: 3.009, 95% CI: 2.251–4.022) compared to S. hyi-
cus. With respect to the geographical effects, the odds of AMR was significantly higher in

Region 3 (OR: 2.041, 95% CI: 1.398–2.978) and Region 5 (OR: 1.813, 95% CI: 1.303–2.523)

than Region 4. For specimen source, the odds of AMR was significantly higher among

Table 5. Trends in AMR1 of Staphylococcus from canine specimens tested at the UKVDL2, 1993–2009.

Group/Antimicrobial

Percentage (number of specimens tested) of resistant isolates to an antimicrobial agent Total P-values

CAT-T3

1993 1995 1997 1999 2001 2003 2005 2007 2009

Aminocoumarin

Novobiocin 3.7 (600) 2.2 (402) 2.3 (475) 0.6 (321) 1.8 (226) 1.6 (243) 1.3 (153) 1.4 (142) 1.2 (81) 2.1 (4964) 0.360

Aminoglycosides 17.2 (600) 9.7 (402) 8.0 (475) 10.9 (321) 13.7 (227 11.1 (243) 9.8 (153) 11.3 (142) 18.5 (81) 11.7 (4972) 0.514

Gentamicin 2.3 (596) 2.2 (402) 2.1 (475) 3.4 (321) 5.7 (227) 2.5 (243) 5.9 (152) 5.6 (142) 7.4 (81) 3.3 (4965) <0.001

Kanamycin 14.0 (594) 9.5 (402) 7.8 (475) 10.9 (321) 13.7 (227) 10.3 (242) 9.8 (153) 10.6 (142) 18.5 (81) 10.6 (4961) 0.111

Neomycin 5.7 (595) 5.5 (402) 3.8 (475) 3.4 (321) 7.0 (227) 7.4 (242) 6.5 (153) 7.7 (142) 12.3 (81) 5.9 (4965) <0.001

Streptomycin 15.2 (597) 7.9 (114) 0 � � � � � � 14.9 (1231) <0.001

Beta-Lactams 61.3 (600) 61.8 (402) 56.0 (475) 56.4 (321) 55.1 (227) 68.3 (243) 63.4 (153) 69.7 (142) 61.7 (81) 59.7 (4972) 0.010

Amoxicillin-clavulanic acid 0.7 (594) 0.5 (402) 0.2 (475) 0.9 (321) 0.4 (224) 1.2 (242) 2.0 (152) 0.0 (140) 2.5 (81) 1.0 (4952) <0.001

Cephalothin4 0.7 (596) 0.2 (402) 0.2 (475) 0.6 (321) 0.4 (227) 0.8 (243) 1.3 (153) 2.8 (142) 4.9 (81) 1.2 (4968) <0.001

Oxacillin 4.5 (599) 2.7 (402) 1.5 (475) 2.8 (321) 3.5 (227) 7.0 (242) 4.6 (153) 4.9 (142) 7.4 (81) 4.1 (4962) <0.001

Penicillin 60.2 (598) 61.6 (401) 55.6 (475) 56.1 (321) 54.2 (227) 66.7 (243) 62.7 (153) 69.7 (142) 61.7 (81) 58.8 (4966) 0.024

Fluoroquinolones

Enrofloxacin 0.7 (538) 0.2 (402) 0.4 (474) 1.6 (320) 1.8 (226) 3.7 (241) 3.3 (152) 6.4 (140) 7.4 (81) 2.0 (4856) <0.001

Lincosamides

Lincomycin 11.1 (594) 7.2 (402) 6.3 (475) 6.5 (321) 7.2 (223) 10.3 (242) 6.5 (153) 7.7 (142) 16.0 (81) 8.1 (4949) 0.490

Macrolides

Erythromycin 11.8 (600) 7.5 (402) 7.4 (475) 8.1 (321) 9.3 (227) 12.8 (243) 10.5 (152) 8.5 (142) 16.0 (81) 9.5 (4961) 0.124

Polypeptides

Bacitracin 9.1 (596) 3.0 (402) 0.8 (474) 2.2 (321) 4.0 (227) 3.7 (243) 2.6 (153) 0.0 (140) 2.5 (81) 3.9 (4960) 0.002

Sulfonamides 74.4 (597) 61.7 (402) 51.8 (475) 45.5 (321) 46.3 (227) 44.0 (243) 44.4 (153) 43.0 (142) 37.0 (81) 54.0 (4969) <0.001

Sulfadiazine-Trimethoprim 74.4 (597) 61.4 (402) 51.5 (474) 44.5 (319) 44.9 (227) 43.6 (243) 43.1 (153) 43.0 (142) 35.8 (81) 53.4 (4962) <0.001

Sulfamethoxazole 18.5 (596) 16.4 (402) 6.9 (475) 10.3 (321) 15.9 (227) 22.6 (243) 15.7 (153) 12.0 (142) 13.6 (81) 15.1 (4965) 0.570

Tetracycline

Tetracycline 31.8 (598) 26.9 (401) 24.0 (475) 23.9 (318) 24.6 (224) 23.9 (238) 19.1 (152) 28.1 (139) 20.3 (79) 25.1 (4941) 0.010

AMR1 88.7 (600) 79.1 (402) 73.5 (475) 72 (321) 71.4 (227 77.4 (243) 73.9 (153) 78.2 (142) 70.4 (81) 77.2 (4972) <0.001

MDR5 34.3 (600) 28.1 (402) 22.1 (475) 20.6 (321) 26.0 (227) 24.3 (243) 22.2 (153) 21.8 (142) 27.2 (81) 25.6 (4972) <0.001

1AMR: Antimicrobial Resistance
2UKVDL: University of Kentucky Veterinary Diagnostic Laboratory
3P-Values of CAT-T: Cochran-Armitage trend test
4Cephalothin: Cephalosporin I
5Multidrug Resistance

�Numbers suppressed because of very small specimen sample sizes (unreliable estimates)

https://doi.org/10.1371/journal.pone.0200719.t005
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specimens from skin, hair, and nails (OR: 1.330, 95% CI: 1.138–1.555) as well as urine and

bladder (OR: 1.870, 95% CI: 1.371–2.549), mucosal surfaces (OR: 2.613, 95% CI: 1.705–4.004),

and all others (OR: 1.372, 95% CI: 1.058–1.779) compared to ear specimens.

For MDR, 5 of the 6 potential predictor variables investigated for unadjusted associations

using a relaxed α = 0.15 were significant: Staphylococcus species (p<0.001), geographic region

(p = 0.001), AKC breed categories (p = 0.014), age group (p = 0.111), and specimen source

(p<0.001) (Table 8). Based on the final multiple logistic regression model, MDR had signifi-

cant associations with Staphylococcus spp. (p<0.001), geographic region (p = 0.007), and speci-

men source (p<0.001) (Table 9). The odds of MDR was significantly higher among S. aureus
(OR: 3.001, 95% CI: 1.966–4.580), SIG (OR: 2.452, 95% CI: 1.698–3.541), and CoNS (OR:

2.993, 95% CI: 2.032–4.4093) isolates than S. hyicus isolates. Region 3 (OR: 2.003, 95% CI:

1.272–3.156), Region 5 (OR: 1.886, 95% CI: 1.230–2.891), and Region 7 (OR: 2.480, 95% CI:

1.365–4.505) had significantly higher odds of MDR compared to Region 4. Similarly, isolates

obtained from skin, hair, and nails (OR: 1.265, 95% CI: 1.075–1.489) as well as urine and blad-

der (OR: 1.790, 95% CI: 1.381–2.321) and mucosal surface (OR: 1.651, 95% CI: 1.202–2.268)

isolates had significantly higher odds of MDR compared to isolates from the ear specimens.

The revised conceptual model based on the significant variables in the models used to identify

predictors of AMR and MDR is shown in Fig 6.

Fig 3. Trends in Staphylococcus resistance to β-Lactams among canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory,

1993–2009.

https://doi.org/10.1371/journal.pone.0200719.g003
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Discussion

This study investigated temporal patterns and predictors of Staphylococcus spp. from canine

clinical specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory.

The level of AMR observed in this study (77.2%) was lower than the 88% reported by Haus-

child and Wójcik [8] in Poland, 90.9% reported by Lilenbaum et al [21] in Canada, or the

90.5% reported by Qekwana et al [22] in South Africa. However, consistent with findings from

previous studies [6,44], SIG was the most common isolate identified and CoNS were the sec-

ond most common. Similar to previous studies [22,26,27], S. aureus had the highest levels of

AMR and MDR followed by the CoNS [1,45,46]. Unfortunately, in this study, CoNS were not

identified to species level nor was testing for mecA gene done since it was not part of the diag-

nostic protocol used by the laboratory that provided the study data. Characterization of CoNS

could aid in understanding their clinical relevance, help prevent hospital acquired infections,

guide optimal antimicrobial therapy, and aid in understanding transfer of resistance factors

from CoNS to CoPS [24,47,48]. The implication of not testing for mecA gene is potential

under-estimation of levels of resistance to all β-lactams since presence of mecA implies resis-

tance to all β-lactams and not just oxacillin.

In this study, 80 of the Staphylococcus spp. isolated showed resistance to half (8 out of 16) of

the antimicrobials tested while 8 isolates showed resistance to 75% (12 out of 16) of the

Fig 4. Trends in Staphylococcus resistance to aminoglycosides, fluoroquinolones and polypeptide among canine specimens submitted to the University of

Kentucky Veterinary Diagnostic Laboratory, 1993–2009.

https://doi.org/10.1371/journal.pone.0200719.g004
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antimicrobials tested. Although these numbers are relatively small compared to the number of

isolates investigated in the study, these findings raise both public health and veterinary medical

concerns due to the zoonotic potential and possible transfer of resistance genes among Staphy-
lococcus spp. [46]. Moreover, it may be indicative of possible development of XDR over time

that could make treatment options more challenging [42,49].

The AMR trends observed in this study illustrate the importance of evaluating individual

antimicrobial temporal patterns within large drug classes such as the β-lactams and amino-

glycosides. For instance, although the Staphylococcus spp. isolates did not show evidence of

significant temporal trends in AMR to aminoglycosides (p = 0.514), several individual antimi-

crobials tested within this class showed significant increasing temporal trend in AMR. Thus, if

the analysis had only been performed at the antimicrobial class level, important AMR temporal

trends would have been missed. The importance of evaluating individual antimicrobials is also

highlighted by the observed varying temporal trends of overall AMR and MDR. The varying

trends observed among individual drugs, with some showing increasing while others showed

decreasing temporal trends, resulted in overall significant decreasing temporal trends in both

AMR and MDR. Additionally, evaluation of the individual drugs also revealed that overall

AMR of Staphylococcus spp. isolates to β-lactams were relatively low among oxacillin (4.1%),

amoxicillin-clavulanic acid (1.0%), and cephalothin (1.2%) while natural penicillin had a con-

sistently higher level of resistance (58.8%) resulting in the overall relatively high AMR of β-lac-

tams. Enrofloxacin (2.0%) and lincosamide (8.1%) also had relatively low levels of resistance

among Staphylococcus spp. isolates. This has important clinical implications because β-lactams,

such as cephalexin and cefpodoxime, as well as enrofloxacin and lincosamide are routinely

Fig 5. Trends in Staphylococcus resistance to sulfonamides and tetracycline as well as overall antimicrobial and multi-drug resistance among canine specimens

submitted to the University of Kentucky Veterinary Diagnostic Laboratory, 1993–2009.

https://doi.org/10.1371/journal.pone.0200719.g005
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Table 6. Unadjusted associations of Staphylococcus AMR1 and predictors among specimens submitted to UKVDL2, 1993–2009.

AMR1 Unadjusted

Predictor Total No # % OR3 95% CI4 P-value

Staphylococcus <0.001

S. aureus 375 302 80.5 3.004 2.126 4.246 <0.001

S. intermedius group 3388 2629 77.6 2.515 1.965 3.219 <0.001

S. schleiferi subsp coagulans 12 4 33.3 0.363 0.107 1.233 0.104

CoNS5 907 737 81.3 3.148 2.364 4.193 <0.001

S. hyicus 290 168 57.9 - - - -

Geographic Region6 <0.001

Region 2 2 1 50.0 0.531 0.033 8.640 0.656

Region 3 672 548 81.5 2.347 1.623 3.393 <0.001

Region 5 3597 2802 77.9 1.871 1.355 2.585 <0.001

Region 6 238 167 70.2 1.249 0.822 1.898 0.298

Region 7 98 69 70.4 1.263 0.740 2.157 0.392

Region 8 192 140 72.9 1.430 0.915 2.234 0.117

Region 4 173 113 65.3 - - - -

AKC Breed categories 0.015

Herding 338 253 74.9 1.031 0.779 1.366 0.829

Hound 482 384 79.7 1.358 1.047 1.761 0.021

Mixed breed 900 681 75.7 1.078 0.879 1.322 0.473

Non-Sporting 555 440 79.3 1.326 1.037 1.696 0.025

Terrier 339 268 79.1 1.308 0.974 1.757 0.074

Toy 240 181 75.4 1.063 0.769 1.470 0.711

Working 333 276 82.9 1.678 1.223 2.301 0.001

Sporting 1088 808 74.3 - - - -

Age Groups 0.002

<2 years 683 557 81.6 1.339 1.052 1.704 0.018

2–4 years 979 774 79.1 1.144 0.926 1.412 0.212

4–6 years 611 453 74.1 0.868 0.689 1.094 0.232

6–8 years 543 398 73.3 0.831 0.655 1.055 0.129

>8 years 1041 799 76.8 - - - -

Sex 0.238

Female 2569 2007 78.1 1.087 0.949 1.245 0.228

Male 2210 1695 76.7 - - - -

Specimen Source <0.001

Skin, Hair, Nails 2,690 2098 78.0 1.422 1.220 1.657 <0.001

Urine, Bladder 367 308 83.9 2.094 1.544 2.840 <0.001

Mucosal Surfaces 224 197 87.4 2.927 1.922 4.457 <0.001

All Others 451 352 78.0 1.426 1.106 1.840 0.006

Ear 1,240 885 71.4 - - - -

1AMR = Antimicrobial resistance
2UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
3OR = Odds Ratio
495% CI = 95% Confidence Interval
5CoNS = Coagulase negative Staphylococcus
6No specimens were submitted from Region 1

https://doi.org/10.1371/journal.pone.0200719.t006
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used in the management of canine allergic dermatitis and pyoderma [50,51]. However, it is

worth noting that other studies have reported higher levels of resistance to β-lactams most

likely due to selection pressure resulting from higher frequency of drug usage in the concerned

populations [10,26,27,52].

It is interesting that although sulfonamides (54.0%) and tetracyclines (25.1%) showed rela-

tively higher levels of AMR than the other drugs, they exhibited significant decreasing tempo-

ral trends in AMR over the study period. The observed decline in AMR to both drugs may be

due to a decline in usage frequency because of decreasing clinical efficacy. This could result in

lower selection pressure and the observed decreasing temporal trend in AMR. Suffice it to say

that this finding suggests that tracking individual drug usage preferences over time among

clinical veterinarians may be important. Prescott et al [53] evaluated antimicrobial resistance

to CoPS isolated from canine urinary tract infections and found both increasing and decreas-

ing temporal trends that coincided with shifts in antimicrobial usage within the Veterinary

Teaching Hospital. In light of this, we suggest that the following factors be considered when

evaluating patterns/changes in AMR: amount of specimens submitted, drug preferences for

treatment of specific body systems/conditions, and shifts in available drugs and usage patterns.

Significant predictors of AMR were Staphylococcus species, specimen source, and geograph-

ical region. Geographic region, as a predictor of AMR, has not been thoroughly investigated in

Table 7. Final model showing adjusted associations of Staphylococcus AMR1 and its predictors among specimens submitted to UKVDL2, 1993–2009.

Predictor Total No. Adjusted OR3 95% CI4 P-value

Staphylococcus <0.001

S. aureus 375 2.728 1.923 3.872 <0.001

S. intermedius group 3,388 2.422 1.887 3.109 <0.001

S. schleiferi subsp coagulans 12 0.386 0.113 1.319 0.129

CoNS5 907 3.009 2.251 4.022 <0.001

S. hyicus 290 - - - -

Geographic Region6 <0.001

Region 2 2 0.474 0.029 7.738 0.600

Region 3 672 2.041 1.398 2.978 <0.001

Region 5 3,597 1.813 1.303 2.523 <0.001

Region 6 238 1.222 0.797 1.874 0.357

Region 7 98 1.108 0.645 1.904 0.711

Region 8 192 1.357 0.861 2.138 0.188

Region 4 173 - - - -

Specimen Source <0.001

Skin, Hair, Nails 2,690 1.330 1.138 1.555 <0.001

UrineBladder 367 1.870 1.371 2.549 <0.001

Mucosal Surfaces 224 2.613 1.705 4.004 <0.001

All Others 451 1.372 1.058 1.779 0.017

Ears 1,240 - - - -

1AMR = Antimicrobial resistance
2UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
3OR = Odds Ratio
495% CI = 95% Confidence Interval
5CoNS = Coagulase negative Staphylococcus
6No specimens were submitted from Region 1

https://doi.org/10.1371/journal.pone.0200719.t007
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Table 8. Unadjusted associations of Staphylococcus MDR1 and predictors among specimens submitted to UKVDL2, 1993–2009.

Predictor MDR1

Total No. # % OR3 95% CI4 P-value

Staphylococcus <0.001

S. aureus 375 113 30.1 3.247 2.133 4.944 <0.001

S. intermedius group 3388 860 25.4 2.561 1.776 3.694 <0.001

S. schleiferi subsp coagulans 12 1 8.3 0.684 0.086 5.469 0.721

CoNS5 907 267 29.4 3.141 2.137 4.617 <0.001

S. hyicus 290 34 11.7 - - - -

Geographic Region6 0.001

Region 2 2 0 0 1 N/A N/A N/A

Region 3 672 194 28.9 2.295 1.464 3.596 <0.001

Region 5 3597 935 26.0 1.986 1.300 3.033 0.002

Region 6 238 44 18.5 1.282 0.755 2.179 0.358

Region 7 98 32 32.7 2.741 1.514 4.962 0.001

Region 8 192 44 22.9 1.681 0.984 2.872 0.058

Region 4 173 26 15.0 - - - -

AKC Breed categories 0.014

Herding 338 90 26.6 1.282 0.969 1.698 0.082

Hound 482 121 25.1 1.184 0.922 1.522 0.186

Mixed breed 900 205 22.8 1.042 0.843 1.288 0.702

Non-Sporting 555 162 29.2 1.456 1.154 1.838 0.002

Terrier 339 91 26.8 1.297 0.980 1.715 0.069

Toy 240 69 28.8 1.426 1.041 1.952 0.027

Working 333 95 28.5 1.410 1.068 1.862 0.015

Sporting 1088 240 22.1 - - - -

Age Groups 0.111

<2 years 683 181 26.5 1.004 0.807 1.250 0.969

2–4 years 979 244 24.9 0.925 0.757 1.129 0.443

4–6 years 611 136 22.3 0.798 0.630 1.009 0.059

6–8 years 543 157 28.9 1.133 0.899 1.427 0.290

>8 years 1041 275 26.4 - - - -

Sex 0.207

Female 2569 680 26.5 1.090 0.957 1.241 0.196

Male 2211 549 24.8 - - - -

Specimen Source <0.001

Skin, Hair, Nails 2,690 702 26.1 1.325 1.127 1.557 0.001

Urine and Bladder 367 126 34.3 1.961 1.520 2.531 <0.001

Mucosal Surfaces 224 73 32.6 1.813 1.329 2.475 <0.001

All Others 451 113 25.1 1.254 0.974 1.615 0.079

Ears 1,240 261 21.0 - - - -

1MDR = Multiple drug resistance
2UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
3OR = Odds Ratio
495% CI = 95% Confidence Interval
5CoNS = Coagulase negative Staphylococcus
6No specimens were submitted from Region 1

https://doi.org/10.1371/journal.pone.0200719.t008
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Table 9. Final model of predictors of MDR1 among Staphylococcus isolates from specimens submitted to the UKVDL2, 1993–2009.

Predictor Total No. OR3 95% CI4 P-value

Staphylococcus <0.001

S. aureus 375 3.001 1.966 4.580 <0.001

S. intermedius group 3388 2.452 1.698 3.541 <0.001

S. schleiferi subsp coagulans 12 0.727 0.091 5.823 0.764

CoNS5 907 2.993 2.032 4.409 <0.001

S. hyicus 290 - - - -

Geographic Region6 0.007

Region 2 2 1 N/A N/A N/A

Region 3 672 2.003 1.272 3.156 0.003

Region 5 3597 1.886 1.230 2.891 0.004

Region 6 238 1.237 0.725 2.112 0.436

Region 7 98 2.480 1.365 4.505 0.003

Region 8 192 1.583 0.923 2.716 0.095

Region 4 173 - - - -

Specimen Source <0.001

Skin, Hair, Nails 2,690 1.265 1.075 1.489 0.005

Urine, Bladder 367 1.790 1.381 2.321 <0.001

Mucosal Surfaces 224 1.651 1.202 2.268 0.002

All Others 451 1.187 0.919 1.534 0.189

Ears 1,240 - - - -

1MDR = Multiple drug resistance
2UKVDL = University of Kentucky Veterinary Diagnostic Laboratory
3OR = Odds Ratio
495% CI = 95% Confidence Interval
5CoNS = Coagulase negative Staphylococcus
6No specimens were submitted from Region 1

https://doi.org/10.1371/journal.pone.0200719.t009

Fig 6. Conceptual model based on significant predictors of antimicrobial resistance and multidrug resistance among Staphylococcus from

canine samples submitted to the University of Kentucky Veterinary Diagnostic Laboratory, 1993–2009.

https://doi.org/10.1371/journal.pone.0200719.g006
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previous studies. In this study we used geographic regions, adopted from CMS rating areas,

because they are based on: (a) population homogeneity such as socioeconomic status and pop-

ulation density, and (b) established regions that would be important for repeatability in future

studies. Our study findings suggest that higher levels of AMR occur in more urban areas.

Region 3 (Louisville, KY) and 5 (Lexington, KY) had the highest rates of submissions as well as

high levels of AMR which are not surprising since they have the 2 largest cities with the highest

populations in Kentucky [40]. Moreover, Jefferson (Louisville, KY) and Fayette (Lexington,

KY) counties have been found to have a higher population of dogs [54]. Thus, we hypothesize

that antimicrobial usage rates might be higher in these regions resulting in higher selection

pressure and hence higher levels of AMR. This could imply that those living in urban areas

may be more likely to approve specimen submissions to diagnostic laboratories. Additionally,

high specimen submissions in urban areas may also be due to higher client income, perceived

benefits of culture and antimicrobial susceptibility testing, and dynamics in the client-veteri-

narian relationship leading to tests being offered more frequently.

Regions 7, 8, and portions of 4 are rural Appalachian counties [55]. It has been shown in

previous public health studies that populations living in Appalachian counties perceive the

value of health care differently leading to increased health disparities among people [56]. This

may be the case among pet populations as well. Furthermore, the rural regions tend to have

smaller populations, fewer dogs, and hence fewer specimen submissions possibly due to finan-

cial limitations and distance to diagnostic laboratories that are usually located in urban areas.

Additionally, fewer dogs in rural areas may imply less antimicrobial usage, less selection pres-

sure and hence lower AMR levels. However, more detailed investigations are obviously war-

ranted to identify specific factors responsible for the observed geographic patterns in AMR.

The significant association observed between AMR and Staphylococcus species as well as

specimen source is consistent with findings from a study by Hoekstra and Paulton [10].

Although the study by Hoekstra and Paulton also found this association between AMR and

sex as well as age of the animal, our study did not find these associations. It is worth noting

that a South African study by Qekwana et al [22] investigated similar predictors of AMR/MDR

and did not find a significant association between any of the factors investigated. This may

imply that: (a) the importance of these predictors may be dependent on geographical location

and population of animals under investigation; (b) testing for AMR vary by geography. There-

fore, these issues should always be borne in mind when making comparisons between studies.

This being a retrospective study has some inherent limitations. For instance, the oxacillin-

resistant isolates were not checked for mecA as this was not part of the diagnostic procedure of

the laboratory that supplied the study data. Additionally, no antimicrobial use history was

available and therefore we could not assess its association with AMR. Moreover, submission

rates to the diagnostic laboratory dramatically decreased over the 16 year study period result-

ing in a smaller number of yearly isolates tested for antimicrobial resistance. Decreased speci-

men submissions may have been due to laboratory pricing changes. Additionally, zone

diameters for each isolate were not recorded making retrospective changes in break-points to

assess their impact on results impossible. In 2009, the S. pseudintermedius oxacillin zone diam-

eter for resistance changed from 10 to 17. Although this happened during the last year of our

study period, it might have led to underestimation of oxacillin resistance in our study. During

the study period, the lab used disk diffusion test that would make it more difficult to identify

smaller changes in trends compared MIC method. Clinical submissions to diagnostic labs tend

to be triggered by a failure of response to empirical therapy and would potentially result in

overestimation of resistance levels in the population. Finally, issues of sample size precluded

some secondary sub-analyses.
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Conclusion

The above limitations notwithstanding, the study provides some useful epidemiological infor-

mation to guide future studies. It is evident that temporal patterns in Staphylococcus spp. resis-

tance varied greatly across antimicrobials. This highlights the need for such investigations to

be carried out for specific drugs as opposed to performing the analysis for entire drug classes,

or worse still, all the drugs combined. The significant association between both AMR and

MDR with geographic region may suggest that local factors play a role in the problem and will

require further investigations.
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