132 research outputs found
Prenatal exposures and exposomics of asthma
This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
Serum antibodies against genitourinary infectious agents in prostate cancer and benign prostate hyperplasia patients: a case-control study
<p>Abstract</p> <p>Background</p> <p>Infection plays a role in the pathogenesis of many human malignancies. Whether prostate cancer (PCa) - an important health issue in the aging male population in the Western world - belongs to these conditions has been a matter of research since the 1970 s. Persistent serum antibodies are a proof of present or past infection. The aim of this study was to compare serum antibodies against genitourinary infectious agents between PCa patients and controls with benign prostate hyperplasia (BPH). We hypothesized that elevated serum antibody levels or higher seroprevalence in PCa patients would suggest an association of genitourinary infection in patient history and elevated PCa risk.</p> <p>Methods</p> <p>A total of 434 males who had undergone open prostate surgery in a single institution were included in the study: 329 PCa patients and 105 controls with BPH. The subjects' serum samples were analysed by means of enzyme-linked immunosorbent assay, complement fixation test and indirect immunofluorescence for the presence of antibodies against common genitourinary infectious agents: human papillomavirus (HPV) 6, 11, 16, 18, 31 and 33, herpes simplex virus (HSV) 1 and 2, human cytomegalovirus (CMV), Chlamydia trachomatis, Mycoplasma hominis, Ureaplasma urealyticum, Neisseria gonorrhoeae and Treponema pallidum. Antibody seroprevalence and mean serum antibody levels were compared between cases and controls. Tumour grade and stage were correlated with serological findings.</p> <p>Results</p> <p>PCa patients were more likely to harbour antibodies against Ureaplasma urealyticum (odds ratio (OR) 2.06; 95% confidence interval (CI) 1.08-4.28). Men with BPH were more often seropositive for HPV 18 and Chlamydia trachomatis (OR 0.23; 95% CI 0.09-0.61 and OR 0.45; 95% CI 0.21-0.99, respectively) and had higher mean serum CMV antibody levels than PCa patients (p = 0.0004). Among PCa patients, antibodies against HPV 6 were associated with a higher Gleason score (p = 0.0305).</p> <p>Conclusions</p> <p>Antibody seropositivity against the analyzed pathogens with the exception of Ureaplasma does not seem to be a risk factor for PCa pathogenesis. The presence or higher levels of serum antibodies against the genitourinary pathogens studied were not consistently associated with PCa. Serostatus was not a predictor of disease stage in the studied population.</p
Global patterns and drivers of ecosystem functioning in rivers and riparian zones
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe
Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues
To increase transgenic production of granulocyte-macrophage colony-stimulating factor (GM-CSF), we mutated the mRNA's 32-untranslated region, AUUUA instability elements. Expression vectors containing human or murine GM-CSF cDNAs coding for wild-type (GM-AUUUA) or mutant versions with reiterated AUGUA repeats (GM-AUGUA) were transfected into cells in culture or animals using particle-mediated gene-transfer technology. Normal peripheral blood mononuclear cells accumulated 20-fold greater levels of GM-CSF mRNA and secreted comparably greater amounts of cytokine after transfection with hGM-AUGUA expression vectors versus hGM-AUUUA. hGM-AUGUA mRNA was fivefold more stable (t 1/2 = 95 minutes) than hGM-AUUUA mRNA (t 1/2 = 20 minutes), accounting for elevated steady-state levels. Transfection site extracts and serum samples obtained 24 hours after gene transfer of hGM-AUGUA cDNA into mouse skin contained greater than 32 ng/mL and 650 pg/mL of GM-CSF protein, respectively, compared with 0.33 ng/mL and less than 8 pg/mL for hGM-AUUUA cDNA. GM-CSF produced from mGM-AUGUA cDNA transfected into rat abdominal epidermis induced a profound neutrophil infiltrate. These data suggest a novel strategy for enhanced production of biologically active cytokines by normal cells after in vivo gene transfer.</jats:p
Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues
Abstract
To increase transgenic production of granulocyte-macrophage colony-stimulating factor (GM-CSF), we mutated the mRNA's 32-untranslated region, AUUUA instability elements. Expression vectors containing human or murine GM-CSF cDNAs coding for wild-type (GM-AUUUA) or mutant versions with reiterated AUGUA repeats (GM-AUGUA) were transfected into cells in culture or animals using particle-mediated gene-transfer technology. Normal peripheral blood mononuclear cells accumulated 20-fold greater levels of GM-CSF mRNA and secreted comparably greater amounts of cytokine after transfection with hGM-AUGUA expression vectors versus hGM-AUUUA. hGM-AUGUA mRNA was fivefold more stable (t 1/2 = 95 minutes) than hGM-AUUUA mRNA (t 1/2 = 20 minutes), accounting for elevated steady-state levels. Transfection site extracts and serum samples obtained 24 hours after gene transfer of hGM-AUGUA cDNA into mouse skin contained greater than 32 ng/mL and 650 pg/mL of GM-CSF protein, respectively, compared with 0.33 ng/mL and less than 8 pg/mL for hGM-AUUUA cDNA. GM-CSF produced from mGM-AUGUA cDNA transfected into rat abdominal epidermis induced a profound neutrophil infiltrate. These data suggest a novel strategy for enhanced production of biologically active cytokines by normal cells after in vivo gene transfer.</jats:p
Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues
Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues
- …
