318 research outputs found

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Comparison of RBE values of high- LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various types of radiation effects in mammalian cells have been studied with the aim to predict the radiosensitivity of tumours and normal tissues, e.g. DNA double strand breaks (DSB), chromosome aberrations and cell reproductive inactivation. However, variation in correlations with clinical results has reduced general application. An additional type of information is required for the increasing application of high-LET radiation in cancer therapy: the Relative Biological Effectiveness (RBE) for effects in tumours and normal tissues. Relevant information on RBE values might be derived from studies on cells in culture.</p> <p>Methods</p> <p>To evaluate relationships between DNA-DSB, chromosome aberrations and the clinically most relevant effect of cell reproductive death, for ionizing radiations of different LET, dose-effect relationships were determined for the induction of these effects in cultured SW-1573 cells irradiated with gamma-rays from a Cs-137 source or with α-particles from an Am-241 source. RBE values were derived for these effects. Ionizing radiation induced foci (IRIF) of DNA repair related proteins, indicative of DSB, were assessed by counting gamma-H2AX foci. Chromosome aberration frequencies were determined by scoring fragments and translocations using premature chromosome condensation. Cell survival was measured by colony formation assay. Analysis of dose-effect relations was based on the linear-quadratic model.</p> <p>Results</p> <p>Our results show that, although both investigated radiation types induce similar numbers of IRIF per absorbed dose, only a small fraction of the DSB induced by the low-LET gamma-rays result in chromosome rearrangements and cell reproductive death, while this fraction is considerably enhanced for the high-LET alpha-radiation. Calculated RBE values derived for the linear components of dose-effect relations for gamma-H2AX foci, cell reproductive death, chromosome fragments and colour junctions are 1.0 ± 0.3, 14.7 ± 5.1, 15.3 ± 5.9 and 13.3 ± 6.0 respectively.</p> <p>Conclusions</p> <p>These results indicate that RBE values for IRIF (DNA-DSB) induction provide little valid information on other biologically-relevant end points in cells exposed to high-LET radiations. Furthermore, the RBE values for the induction of the two types of chromosome aberrations are similar to those established for cell reproductive death. This suggests that assays of these aberrations might yield relevant information on the biological effectiveness in high-LET radiotherapy.</p

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV

    Get PDF
    The inclusive Ds±D_s^{\pm} production asymmetry is measured in pppp collisions collected by the LHCb experiment at centre-of-mass energies of s=7\sqrt{s} =7 and 8 TeV. Promptly produced Ds±D_s^{\pm} mesons are used, which decay as Ds±ϕπ±D_s^{\pm}\to\phi\pi^{\pm}, with ϕK+K\phi\to K^+K^-. The measurement is performed in bins of transverse momentum, pTp_{\rm T}, and rapidity, yy, covering the range 2.5<pT<25.02.5<p_{\rm T}<25.0 GeV/c/c and 2.0<y<4.52.0<y<4.5. No kinematic dependence is observed. Evidence of nonzero Ds±D_s^{\pm} production asymmetry is found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm

    Observation of the decay Λ <sub>b</sub> <sup>0</sup>  → ψ(2S)pπ<sup>−</sup>

    Get PDF
    International audienceThe Cabibbo-suppressed decay Λb0_{b}^{0}  → ψ(2S)pπ^{−} is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb1^{−1} of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The ψ(2S) mesons are reconstructed in the μ+^{+}μ^{−} final state. The branching fraction with respect to that of the Λb0_{b}^{0}  → ψ(2S)pK^{−} decay mode is measured to b

    Search for CP violation in Λb0→pK− and Λb0→pπ− decays

    Get PDF
    A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date

    Evidence for an nc(1S)ff- resonance in B0 yc(1S)K+ decays

    Get PDF
    A Dalitz plot analysis of B0→ηc(1S)K+π- decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s=7,8 and 13TeV , corresponding to a total integrated luminosity of 4.7fb-1 . A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π- resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20-22+18MeV and 152±58-35+60MeV , respectively. The spin-parity assignments JP=0+ and JP=1- are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π- branching fraction is performed and gives B(B0→ηc(1S)K+π-)=(5.73±0.24±0.13±0.66)×10-4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Observation of B+c → D0K+ decays

    Get PDF
    Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb−1, recorded by the LHCb detector at center-of-mass energies of 7 and 8 TeV, the B+ c → D0K+ decay is observed with a statistical significance of 5.1 standard deviations. By normalizing to B+ → D¯ 0π+ decays, a measurement of the branching fraction multiplied by the production rates for B+ c relative to B+ mesons in the LHCb acceptance is obtained, R D 0 K = ( f c / f u ) × B ( B + c → D 0 K + ) = ( 9. 3 + 2.8 − 2.5 ± 0.6 ) × 10 − 7, where the first uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly through weak annihilation and penguin amplitudes, and is the first B+ c decay of this nature to be observed

    Measurement of the B_{s}^{0}→μ^{+}μ^{-} Branching Fraction and Effective Lifetime and Search for B^{0}→μ^{+}μ^{-} Decays.

    Get PDF
    A search for the rare decays B_{s}^{0}→μ^{+}μ^{-} and B^{0}→μ^{+}μ^{-} is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb^{-1}. An excess of B_{s}^{0}→μ^{+}μ^{-} decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(B_{s}^{0}→μ^{+}μ^{-})=(3.0±0.6_{-0.2}^{+0.3})×10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the B_{s}^{0}→μ^{+}μ^{-} effective lifetime, τ(B_{s}^{0}→μ^{+}μ^{-})=2.04±0.44±0.05  ps, is reported. No significant excess of B^{0}→μ^{+}μ^{-} decays is found, and a 95% confidence level upper limit, B(B^{0}→μ^{+}μ^{-})<3.4×10^{-10}, is determined. All results are in agreement with the standard model expectations
    corecore