17 research outputs found

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    Get PDF
    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning

    Review: Detrimental effects of alcohol exposure around conception: putative mechanisms

    No full text
    In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these adverse developmental outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming

    Review: Sexual dimorphism in the formation, function and adaptation of the placenta

    No full text
    Exposure of the embryo or fetus to perturbations in utero can result in intrauterine growth restriction, a primary risk factor for the development of adult disease. However, despite similar exposures, males and females often have altered disease susceptibility or progression from different stages of life. Fetal growth is largely mediated by the placenta, which, like the fetus is genetically XX or XY. The placenta and its associated trophoblast lineages originate from the trophectoderm (TE) of the early embryo. Rodent models (rat, mouse, spiny mouse), have been used extensively to examine placenta development and these have demonstrated the growth trajectory of the placenta in females is generally slower compared to males, and also shows altered adaptive responses to stressful environments. These placental adaptations are likely to depend on the type of stressor, duration, severity and the window of exposure during development. Here we describe the divergent developmental pathways between the male and female placenta contributing to altered differentiation of the TE derived trophoblast subtypes, placental growth, and formation of the placental architecture. Our focus is primarily genetic or environmental pertur bations in rodent models which show altered placental responsiveness between sexes. We suggest that perturbations during early placental development may have greater impact on viability and growth of the female fetus whilst those occurring later in gestation may preferentially affect the male fetus. This may be of great relevance to human pregnancies which result from assisted reproductive technologies or complications such as pre-eclampsia and diabetes

    Sex differences in rat placental development: from pre-implantation to late gestation

    No full text
    Background A male fetus is suggested to be more susceptible to in utero and birth complications. This may be due in part to altered morphology or function of the XY placenta. We hypothesised that sexual dimorphism begins at the blastocyst stage with sex differences in the progenitor trophectoderm (TE) and its derived trophoblast lineages, as these cells populate the majority of cell types within the placenta. We investigated sex-specific differences in cell allocation in the pre-implantation embryo and further characterised growth and gene expression of the placental compartments from the early stages of the definitive placenta through to late gestation. Methods Naturally mated Sprague Dawley dams were used to collect blastocysts at embryonic day (E) 5 to characterise cell allocation; total, TE, and inner cell mass (ICM), and differentiation to downstream trophoblast cell types. Placental tissues were collected at E13, E15, and E20 to characterise volumes of placental compartments, and sex-specific gene expression profiles. Results Pre-implantation embryos showed no sex differences in cell allocation (total, TE and ICM) or early trophoblast differentiation, assessed by outgrowth area, number and ploidy of trophoblasts and P-TGCs, and expression of markers of trophoblast stem cell state or differentiation. Whilst no changes in placental structures were found in the immature E13 placenta, the definitive E15 placenta from female fetuses had reduced labyrinthine volume, fetal and maternal blood space volume, as well as fetal blood space surface area, when compared to placentas from males. No differences between the sexes in labyrinth trophoblast volume or interhaemal membrane thickness were found. By E20 these sex-specific placental differences were no longer present, but female fetuses weighed less than their male counterparts. Coupled with expression profiles from E13 and E15 placental samples may suggest a developmental delay in placental differentiation. Conclusions Although there were no overt differences in blastocyst cell number or early placental development, reduced growth of the female labyrinth in mid gestation is likely to contribute to lower fetal weight in females at E20. These data suggest sex differences in fetal growth trajectories are due at least in part, to differences in placenta growth.</p

    Alcohol exposure impairs trophoblast survival and alters subtype-specific gene expression in vitro.

    No full text
    Maternal alcohol consumption is common prior to pregnancy recognition and in the rat results in altered placental development and fetal growth restriction. To assess the effect of ethanol (EtOH) exposure on the differentiation of trophoblast stem (TS) cells, mouse TS lines were differentiated in vitro for 6 days in 0%, 0.2% or 1% EtOH. This reduced both trophoblast survival and expression of labyrinth and junctional zone trophoblast subtype-specific genes. This suggests that fetal growth restriction and altered placental development associated with maternal alcohol consumption in the periconceptional period could be mediated in part by direct effects on trophoblast development

    The effects of periconceptional maternal alcohol intake and a postnatal high-fat diet on obesity and liver disease in male and female rat offspring

    No full text
    The effects of maternal alcohol consumption around the time of conception on offspring are largely unknown and difficult to determine in a human population. This study utilized a rodent model to examine if periconceptional alcohol (PC:EtOH), alone or in combination with a postnatal high-fat diet (HFD) resulted in obesity and liver dysfunction. Sprague-Dawley rats were fed a control or ethanol-containing liquid diet (12.5% EtOH v/v) from 4 days prior to mating until 4 days of gestation (n=12/group). A subset of offspring was fed a HFD between 3-8 months of age. In males, PC:EtOH and HFD increased total body fat mass (PPC:EtOH&lt;0.05; PHFD&lt;0.0001), whereas in females, only HFD increased fat mass (PHFD&lt;0.0001). PC:EtOH increased microvesicular liver steatosis in male, but not female offspring. Plasma triglycerides, HDL and cholesterol were increased in PC:EtOH-exposed males (PPC:EtOH&lt;0.05); and LDL, cholesterol and leptin in PC:EtOH-exposed females (PPC:EtOH&lt;0.05). mRNA levels of Tnf-α and Lep in visceral adipose tissue were increased by PC:EtOH in both sexes (PPC:EtOH&lt;0.05) and IL-6 mRNA was increased in males (PPC:EtOH&lt;0.05). This was associated with reduced miR-26a expression, a known regulator of IL6 and TNFα. Alcohol exposure around conception increases obesity risk, alters plasma lipid and leptin profiles and induces liver steatosis in a sex-specific manner. These programmed phenotypes were similar to those caused by a postnatal HFD, particularly in male offspring. These results have implications for the health of offspring whose mothers consumed alcohol around the time of conception.</p

    Measures of evidence-informed decision-making competence attributes: a psychometric systematic review

    No full text
    corecore