104 research outputs found

    An Optimizing Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA

    Full text link
    [EN] Maude-NPA is an analysis tool for cryptographic security protocols that takes into account the algebraic properties of the cryptosystem. Maude-NPA can reason about a wide range of cryptographic properties. However, some algebraic properties, and protocols using them, have been beyond Maude-NPA capabilities, either because the cryptographic properties cannot be expressed using its equational unification features or because the state space is unmanageable. In this paper, we provide a protocol transformation that can safely get rid of cryptographic properties under some conditions. The time and space difference between verifying the protocol with all the crypto properties and verifying the protocol with a minimal set of the crypto properties is remarkable. We also provide, for the first time, an encoding of the theory of bilinear pairing into Maude-NPA that goes beyond the encoding of bilinear pairing available in the Tamarin toolPartially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. Julia Sapiña has been supported by the Generalitat Valenciana APOSTD/2019/127 grantAparicio-Sánchez, D.; Escobar Román, S.; Gutiérrez Gil, R.; Sapiña-Sanchis, J. (2020). An Optimizing Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA. Springer Nature. 230-250. https://doi.org/10.1007/978-3-030-59013-0_12S230250Maude-NPA manual v3.1. http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPAThe Tamarin-Prover Manual, 4 June 2019. https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdfAl-Riyami, S.S., Paterson, K.G.: Tripartite authenticated key agreement protocols from pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 332–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_27Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 447–533. Elsevier Science (2001)Baelde, D., Delaune, S., Gazeau, I., Kremer, S.: Symbolic verification of privacy-type properties for security protocols with XOR. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, pp. 234–248. IEEE Computer Society (2017)Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus and ProVerif. Found. Trends Privacy Secur. 1(1–2), 1–135 (2016)Clavel, M., et al.: Maude manual (version 3.0). Technical report, SRI International, Computer Science Laboratory (2020). http://maude.cs.uiuc.eduComon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_38Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equational theories in automated verification of stateful protocols. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_6Escobar, S., Hendrix, J., Meadows, C., Meseguer, J.: Diffie-Hellman cryptographic reasoning in the Maude-NRL protocol analyzer. In: Proceedings of 2nd International Workshop on Security and Rewriting Techniques (SecReT 2007) (2007)Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1–2), 162–202 (2006)Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1Escobar, S., et al.: Protocol analysis in Maude-NPA using unification modulo homomorphic encryption. In: Proceedings of PPDP 2011, pp. 65–76. ACM (2011)Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: State space reduction in the Maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014)Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security protocol correct? In: Proceedings of IEEE Symposium on Security and Privacy, pp. 160–171 (1998)Guttman, J.D.: Security goals and protocol transformations. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_8Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_23Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement. In: Dupuy, M., Paradinas, P. (eds.) SEC 2001. IIFIP, vol. 65, pp. 229–244. Springer, Boston, MA (2002). https://doi.org/10.1007/0-306-46998-7_16Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-Hellman exponentiation. In: IEEE Computer Security Foundations, pp. 157–171 (2009)Küsters, R., Truderung, T.: Reducing protocol analysis with XOR to the XOR-free case in the horn theory based approach. J. Autom. Reason. 46(3–4), 325–352 (2011)Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26(2), 113–131 (1996)Meier, S., Cremers, C., Basin, D.: Strong invariants for the efficient construction of machine-checked protocol security proofs. In: 2010 23rd IEEE Computer Security Foundations Symposium, pp. 231–245 (2010)Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018)Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic methods. J. Log. Algebr. Meth. Program. 110, 100483 (2020)Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for symbolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_6Sasse, R., Escobar, S., Meadows, C., Meseguer, J.: Protocol analysis modulo combination of theories: a case study in Maude-NPA. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 163–178. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22444-7_11Schmidt, B., Sasse, R., Cremers, C., Basin, D.A.: Automated verification of group key agreement protocols. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, pp. 179–194. IEEE Computer Society (2014)Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log. Algebraic Methods Program. 96, 81–110 (2018)TeReSe: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Narendran, P.: Theories of homomorphic encryption, unification, and the finite variant property. In: Proceedings of PPDP 2014, pp. 123–133. ACM (2014

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that <it>ex-vivo </it>or even <it>in-vivo </it>abolition <it>or </it>disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger <it>arrays </it>and <it>nucleases </it>(ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype.</p> <p>Methods and Results</p> <p><it>First, </it>we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) <it>arrays </it>(ZFAs or Zif<sub>HIV-pol</sub>) and (b) two zinc-finger <it>nucleases </it>(ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (Zif<sub>HIV-pol</sub>F<sub>N</sub>). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (Zif<sub>HIV-1</sub>F<sub>N</sub>). <it>Second, </it>a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either Zif<sub>HIV-pol</sub>F<sub>N </sub>or Zif<sub>HIV-1</sub>F<sub>N </sub>chimeric genes (termed <b>LV- 2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N, </b></sub>respectively) is proposed. <it>Third, </it>two preclinical models for controlled testing of the safety and efficacy of either of these LVs are described using active HIV-infected TZM-bl reporter cells (HeLa-derived JC53-BL cells) and latent HIV-infected cell lines.</p> <p>Conclusion</p> <p><b>LV-2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N </b></sub>may offer the <it>ex-vivo </it>or even <it>in-vivo </it>experimental opportunity to halt HIV replication functionally by directly abrogating HIV-pol-gene-action <it>or </it>disrupting/excising over 80% of the proviral HIV DNA from latently infected cells.</p

    Modular Verification of Protocol Equivalence in the Presence of Randomness

    Get PDF
    Security protocols that provide privacy and anonymity guarantees are growing increasingly prevalent in the online world. The highly intricate nature of these protocols makes them vulnerable to subtle design flaws. Formal methods have been successfully deployed to detect these errors, where protocol correctness is formulated as a notion of equivalence (indistinguishably). The high overhead for verifying such equivalence properties, in conjunction with the fact that protocols are never run in isolation, has created a need for modular verification techniques. Existing approaches in formal modeling and (compositional) verification of protocols for privacy have abstracted away a fundamental ingredient in the effectiveness of these protocols, randomness. We present the first composition results for equivalence properties of protocols that are explicitly able to toss coins. Our results hold even when protocols share data (such as long term keys) provided that protocol messages are tagged with the information of which protocol they belong to.Ope

    Microarray Profiling of Phage-Display Selections for Rapid Mapping of Transcription Factor–DNA Interactions

    Get PDF
    Modern computational methods are revealing putative transcription-factor (TF) binding sites at an extraordinary rate. However, the major challenge in studying transcriptional networks is to map these regulatory element predictions to the protein transcription factors that bind them. We have developed a microarray-based profiling of phage-display selection (MaPS) strategy that allows rapid and global survey of an organism's proteome for sequence-specific interactions with such putative DNA regulatory elements. Application to a variety of known yeast TF binding sites successfully identified the cognate TF from the background of a complex whole-proteome library. These factors contain DNA-binding domains from diverse families, including Myb, TEA, MADS box, and C2H2 zinc-finger. Using MaPS, we identified Dot6 as a trans-active partner of the long-predicted orphan yeast element Polymerase A & C (PAC). MaPS technology should enable rapid and proteome-scale study of bi-molecular interactions within transcriptional networks

    Thermostable DNA Polymerase from a Viral Metagenome Is a Potent RT-PCR Enzyme

    Get PDF
    Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 3′-5′ exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics
    corecore