
Modular Verification of Protocol Equivalence in
the Presence of Randomness

Matthew S. Bauer1 and Rohit Chadha2Mahesh Viswanathan1

1 University of Illinois at Urbana-Champaign
2 University of Missouri

Abstract. Security protocols that provide privacy and anonymity guar-
antees are growing increasingly prevalent in the online world. The highly
intricate nature of these protocols makes them vulnerable to subtle design
flaws. Formal methods have been successfully deployed to detect these
errors, where protocol correctness is formulated as a notion of equiva-
lence (indistinguishably). The high overhead for verifying such equiva-
lence properties, in conjunction with the fact that protocols are never
run in isolation, has created a need for modular verification techniques.
Existing approaches in formal modeling and (compositional) verification
of protocols for privacy have abstracted away a fundamental ingredi-
ent in the effectiveness of these protocols, randomness. We present the
first composition results for equivalence properties of protocols that are
explicitly able to toss coins. Our results hold even when protocols share
data (such as long term keys) provided that protocol messages are tagged
with the information of which protocol they belong to.

1 Introduction

Cryptographic protocols are often analyzed in the so-called symbolic model,
where the assumption of perfect cryptography is made. Messages are symbolic
terms modulo an equational theory (as opposed to bit-strings) and crypto-
graphic operations are modeled via equations in the theory. The threat model
is that of the Dolev-Yao attacker [33], in which the attacker has the ability to
read, intercept and replay all messages on public channels and can also non-
deterministically inject its own messages into the network. Verification tech-
niques in this domain are fairly mature and a number of sophisticated analysis
tools have been developed [11, 34, 7].

Automated tools based on Dolev-Yao analysis are fundamentally limited
to protocols that are purely non-deterministic, where non-determinism is used
to model concurrency as well as the interaction between protocol participants
with their environment. The order and nature of these interactions is deter-
mined entirely by an attacker (also known as a scheduler) who resolves all non-
determinism. There are, however, a large class of protocols whose correctness
depends on an explicit ability to model and reason about coin tosses. With pri-
vacy goals in mind, these protocols lie at the heart of many anonymity systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

such as Crowds [49], mix-networks [19], onion routers [37] and Tor [32]. Random-
ization is also used in cryptographic protocols to achieve fair exchange [10, 35],
voter privacy in electronic voting [51] and denial of service prevention [39]. The
privacy and anonymity properties achieved by these systems are often formu-
lated in terms protocol equivalence (indistinguishability). For example, protocol
equivalence is used in the analysis of properties like anonymity, unlinkability,
and vote privacy [30, 5].

Catherine Meadows, in her summary of the over 30 year history of formal
techniques in cryptographic protocol analysis [45, 46], identified the develop-
ment formal analysis techniques for anonymous communication systems as a
fundamental and still largely unsolved challenge. The main difficulty in adapting
Dolev-Yao analysis to such randomized protocols has been the subtle interac-
tion between non-determinism and randomization — if the attacker is allowed
to “observe” the results of the private coin tosses in its scheduling decisions,
then the analysis may reveal “security flaws” in correct protocols (see examples
in [20, 12, 36, 17, 16]). In order to circumvent this problem, many authors [29, 20,
12, 36, 17, 16, 9, 15] have proposed that protocols be analyzed only with respect
to attackers that are forced to take the same action in any two protocol execu-
tions that are indistinguishable. For the indistinguishability relation on traces,
we propose [9, 15] trace-indistinguishability of applied-pi calculus processes [1].
In this framework, an attacker is a function from traces, the equivalence classes
on executions under the trace-indistinguishability relation, to the set of attacker
actions.

We consider the problem of composition for randomized protocols when the
protocols are allowed to share data, such as keys. Our focus here is on equiva-
lence properties. Two randomized protocols P and Q are said to be trace equiv-
alent [15], if for each attacker A and trace t, the measure of executions in the
trace t obtained when A interacts with protocol P is exactly the same as the
measure of executions in the trace t obtained when A interacts with protocol Q.
The protocols themselves are specified as processes in an applied pi-style calcu-
lus, parametrized by an equational theory that models cryptographic primitives.
The protocols in our formalism are simple; a protocol is said to be simple if
there is no principal-level nondeterminism [25]. As observed in [15], this notion
of indistinguishability coincides with the notion of trace-equivalence for simple
non-randomized protocols.

Contributions: We begin by considering the case when the number of ses-
sions in a protocol is bounded. Our first result (Theorem 1 on Page 13) captures
the conditions under which the composition of equivalent protocols under dis-
joint equational theories preserves trace equivalence. Formally, consider trace
equivalent protocols P and Q over equational theory Ea, and trace equivalent
protocols P ′ and Q′ over equational theory Eb, where Ea and Eb are disjoint. We
show that the composition of P and P ′ is equivalent to the composition of Q and
Q′, provided the shared secrets between P and P ′ and those between Q and Q′

are kept with probability 1. While such a result also holds for non-randomized
protocols (see [27, 4] for example), randomization presents its own challenges.

3

The first challenge arises from the fact that even if P ′ and Q′ do not leak
shared secrets (with P and Q, respectively), they may still reveal the equalities
that hold amongst the shared secrets. Revealing these equalities may, in some
cases, allow the attacker to infer the result of a private coin toss (See Example 7
on Page 15). Consequently, our composition theorem requires that P and Q
remain trace equivalent even when such equalities are revealed. The revelation
of the equalities is achieved by adding actions to protocols P and Q that reveal
“hashes” of shared secrets.

As in the case of non-randomized protocols [27, 4], the proof proceeds by
showing that it suffices to consider the case when P (Q) does not share any
secrets with P ′ (Q′ respectively). This is achieved by observing that if the com-
position of P and P ′ is not trace equivalent to the composition of Q and Q′,
then there must be a trace t and an individual execution ρ in the composition
of P and P ′ (or of Q and Q′) such that ρ belongs to t and there is no execution
in the composition of Q and Q′ (or of P and P ′ respectively) in the trace t. It is
then observed that if the shared secrets between P and P ′, and between Q and
Q′, are re-initialized to fresh values respecting the same equalities amongst them
as in the execution ρ, then the transformed protocols continue to remain trace
inequivalent. For randomized protocols, we no longer have an individual execu-
tion that witnesses protocol inequivalence. Instead we have an attacker A and
a trace t which occurs with different probabilities when the protocols interact
with A. Observe that the executions corresponding to the trace t will then form
a tree, and different equalities amongst the shared secrets may hold in different
branches. Thus, a simple transformation as in the case of non-randomized proto-
cols no longer suffices (see Example 5 on Page 14). Instead, we have to perform
a non-trivial inductive argument (with induction on number of coin tosses) to
show that it suffices to consider the case when P (Q) does not share any secrets
with P ′ (Q′ respectively).

Our second result concerns the case when the equational theories Ea and Eb
are the same, each containing cryptographic primitives for symmetric encryption,
symmetric decryption and hashes (see Theorem 2 on Page 17). For this case, we
show that the composition of randomized protocols preserves trace equivalence
when the protocols are allowed to share secrets, provided protocol messages are
tagged with the information of which protocol they belong to. As in the case
of non-randomized protocols, this is achieved by showing that in presence of
tagging, the protocols can be transformed to new protocols Pnew, P

′
new, Qnew, Q

′
new

such that Pnew and Qnew are trace equivalent protocols with equational theory
Enew, and P ′new and Q′new are trace equivalent protocols with disjoint equational
theory E′new. Thus, this result follows from our first result.

Our final result extends the above result to the case of unbounded number
of sessions (see Theorem 3 on Page 18). We again consider the case when the
equational theories Ea and Eb are the same, containing cryptographic primitives
for symmetric encryption, symmetric decryption and hashes. In order to achieve
this result, we additionally require that messages from each session are tagged
with a unique session identifier.

4

Related Work. For the non-randomized case, a number of papers have iden-
tified requirements for proving protocol compositions secure. Safety properties
are considered in [28, 42, 40, 41, 2, 24, 26, 6, 31, 21, 27, 47, 4] and indistinguishabil-
ity properties in [3, 4]. A recent work [9] has also explored the composition of
randomized protocols with respect to reachability properties. In the computa-
tional model, the problem of composing protocols securely has been studied in
[13, 14]. Our result is most closely related to [3, 4, 9].

Much of research effort on mechanically analyzing anonymity systems has
used techniques based on model checking and simulation. For example, [53]
uses the PRISM model checker [44] to analyze the Crowds system. While these
works are valuable, the techniques are ad-hoc in nature, and don’t naturally
extend to larger classes of protocols. In [52], an analysis of Chaum’s Dinning
cryptographers protocol [18] was carried out the in CSP framework [43]. In
all of these works, the messages constructed by the attacker is assumed to be
bounded. [15] consider the complexity of the problem of verifying bounded num-
ber of sessions of simple randomized cryptographic protocols that use symmet-
ric and asymmetric encryption. They show that checking secrecy properties is
coNEXPTIME-complete and the problem of checking indistinguishability is
decidable in coNEXPTIME. In contrast, both of these problems are known
to be coNP-complete for non-randomized protocols [25, 22, 8, 50]. The increased
overhead in the verification effort that comes with the introduction of randomiza-
tion in protocols places a premium on modular verification techniques, allowing
smaller analysis efforts to be stitched together.

2 Preliminaries

We start by reviewing some standard notions for describing systems that exhibit
both non-deterministic and probabilistic behavior. This begins with treatment
of Markov chains in Section 2.1 followed by a discussion on partially observable
Markov decision processes (POMDPs) in Section 2.2. POMDPs will form the
basis for the semantics of our process calculus, which is paramaterized by an
equational theory, the specifics of which we discuss in Section 2.3.

2.1 Probability spaces, Markov chains

We will assume the reader is familiar with probability spaces and Markov chains
and give only the necessary definitions. A (sub)-probability space on S is a tuple
Ω = (X,Σ, µ) where Σ is a σ-algebra on X and µ : Σ → [0, 1] is a countably
additive function such that µ(∅) = 0 and µ(X) ≤ 1. The set Σ is said to be the
set of events and µ the (sub)-probability measure of Ω. For F ∈ Σ, the quantity
µ(F) is said to be the probability of the event F . If µ(X) = 1 then we call µ
a probability measure. Given two (sub)-probability measures µ1 and µ2 on a
measure space (S,Σ) as well as a real number p ∈ [0, 1], the convex combination
µ1+pµ2 is the (sub)-probability measure µ such that for each set F ∈ Σ we have
µ(F) = p ·µ1(F)+(1−p) ·µ2(F). The set of all discrete probability distributions

5

over S will be denoted by Dist(S). Given any x ∈ S, the Dirac measure on S,
denoted δx, is the discrete probability measure µ such that µ(x) = 1.

A discrete-time Markov chain (DTMC) is used to model systems which ex-
hibit probabilistic behavior. Formally, a DTMC is a tupleM = (Z, zs, ∆) where
Z is a countable set of states, zs is the initial state and ∆ : Z ↪→ Dist(Z) is
the (partial) transition function which maps Z to a (discrete) probability dis-
tribution over Z. Informally, the process modeled by M evolves as follows. The
process starts in the state zs. After i execution steps, if the process is in the
state z, the process moves to state z′ at execution step (i+ 1) with probability
∆(z)(z′). For the rest of the paper, we will assume that for each state z, if ∆(z)
is defined, then the set {z′ |∆(z)(z′) > 0} is finite. An execution ofM is a finite
sequence z0 −→ z1 −→ z2 −→ · · · −→ zm such that z0 = zs and for each i ≥ 0,
∆(zi)(zi+1) > 0. The function ∆ can be extended to a probability measure on
the σ-algebra genereted by the set of all executions of M.

2.2 Partially observable Markov decision processes

POMDPs are used to model processes which exhibit both probabilistic and non-
deterministic behavior, where the states of the system are only partially observ-
able. Formally, a POMDP is a tuple M = (Z, zs,Act, ∆,O, obs) where Z is a
countable set of states, zs ∈ Z is the initial state, Act is a (countable) set of
actions, ∆ : Z×Act ↪→ Dist(Z) is a partial function called the probabilistic tran-
sition relation, O is a countable set of observations and obs : Z → O is a labeling
of states with observations. Furthermore, we assume that for any action α and
states z1 and z2 such that obs(z1) = obs(z2), ∆(z1, α) is defined iff ∆(z2, α) is

defined. As a matter of notation, we shall write z
α−→ µ whenever ∆(z, α) = µ. A

POMDP is like a DTMC except that at each state z, there is a choice amongst
several possible probabilistic transitions. The choice of which probabilistic tran-
sition to trigger is resolved by an attacker. Informally, the process modeled by
M evolves as follows. The process starts in the state zs. After i execution steps,
if the process is in the state z, then the attacker chooses an action α such that
z

α−→ µ and the process moves to state z′ at the (i + 1)-st step with probabil-
ity µ(z′). The choice of which action to take is determined by the sequence of
observations seen by the attacker.

An execution ρ of the POMDPM is a finite sequence z0
α1−→ z1

α2−→ z2 · · ·
αm−−→

zm such that z0 = zs and for each i ≥ 0, zi
αi+1−−−→ µi+1 and µi+1(zi+1) > 0.

The set of all executions of M will be denoted by Exec(M). If ρ = z0
α1−→

z1
α2−→ z2 · · ·

αm−−→ zm is an execution then we write last(ρ) = zm and say the
length of ρ, denoted |ρ|, is m. The probability of the event ρ in M is denoted
prob(ρ,M). An execution ρ1 is said to be a one-step extension of the execution

ρ = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm if there exists αm+1 and zm+1 such that

ρ1 = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm

αm+1−−−−→ zm+1. In this case, we say that ρ1
extends ρ by (αm+1, zm+1). An execution is called maximal if it has no one-step

extension. For an execution ρ = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm we write tr(ρ)

to represent the trace of ρ, defined as the sequence obs(z0)
α1−→ obs(z1)

α2−→

6

obs(z2) · · · αm−−→ obs(zm). The set of all traces is denoted Trace(M). Informally,
a trace models the view of the attacker.

As discussed above, the choice of which transition to take in an execution is
resolved by an attacker. An attacker A : Trace(M) ↪→ Act is a partial function
that resolves all non-determinism and the resulting behavior can be described
by a DTMC MA = (Exec(M), zs, ∆

A) where for each ρ ∈ Exec(M), ∆A(ρ) is
the discrete probability distribution on Exec(M) such that ∆A(ρ) is defined if
and only if ∆(last(ρ),A(tr(ρ))) is defined. When the latter holds,

∆A(ρ)(ρ1) =

∆(last(ρ), α)(z) if α = A(tr(ρ)), z = last(ρ1), and
ρ1 extends ρ by (α, z)

0 otherwise.

POMDPs and state-based safety properties Given a POMDP M =
(Z, zs,Act, ∆,O, obs), a set Ψ ⊆ Z is said to be a state-based safety property.

An execution κ ∈ Exec(MA) is said to satisfy Ψ if for each state ρ = z0
α1−→

z1
α2−→ z2 · · ·

αm−−→ zm in κ is such that zj ∈ Ψ for all 0 ≤ j ≤ m. We say M
satisfies Ψ with probability ≥ p against the attacker A (written MA |=p Ψ) if
the measure of the set {κ | κ is a maximal execution of MA and κ 6|= Ψ} in the
DTMCMA is ≤ 1− p. We say thatM satisfies Ψ with probability ≥ p (written
M |=p Ψ) if for all adversaries A, MA |=p Ψ .

POMDPs and equivalence properties LetM = (Z, zs,Act, ∆,O, obs) be a
POMDP. Given an adversaryA forM and a trace t ∈ Trace(M), let prob(t,MA)
denote the measure of the event {κ | κ is an exeuciton of MA and tr(κ) = t}.
Two POMDPs M1 and M2 with the same set of actions and observations are
said to be trace equivalent, denotedM1 ≈M2, if for every attacker A and trace
t ∈ Trace(M1) ∪ Trace(M2), prob(t,MA1) = prob(t,MA2).

2.3 Terms, equational theories and frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume countably infinite and pairwise disjoint sets of special constant
symbols N and M, where N and M represent public and private names, re-
spectively. Variable symbols are the union of two disjoint sets X and Xw (where
F∩(X ∪Xw) = ∅) representing protocol and frame variables, respectively. Terms
are built by the application of function symbols to variables and terms in the
standard way. Given a signature F and Y ⊆ X ∪Xw, we use T (F ,Y) to denote
the set of terms built over F and Y. The set of variables occurring in a term u
is denoted by vars(u). A ground term is one that contains no free variables.

A substitution σ is a partial function that maps variables to terms such that
the domain of σ is finite. For a substitution σ, dom(σ) will denote the domain and
ran(σ) will denote the range. For a substitution σ with dom(σ) = {x1, ..., xk}, we
denote σ as {x1 7→ σ(x1), ..., xk 7→ σ(xk)}. A substitution σ is said to be ground
if every term in ran(σ) is ground and a substitution with an empty domain shall

7

be denoted as ∅. Substitutions can be extended to terms in the usual way and
we write tσ for the term obtained by applying the substitution σ to the term t.

Our process algebra is parameterized by a non-trivial equational theory
(F , E), where E is a set of F-Equations. By an F-Equation, we mean a pair
u = v where u, v ∈ T (F \ N ,X) are terms that do not contain private names.
Two terms u and v are said to be equal with respect to an equational theory
(F , E), denoted u =E v, if E ` u = v in the first order theory of equality.
We assume that if two terms containing names are equal, they will remain equal
when the names are replaced by arbitrary terms. We often identify an equational
theory (F , E) by E when the signature is clear from the context. Processes are
executed in an environment that consists of a frame ϕ and a binding substitution
σ. Formally, σ : X → T (F) and ϕ : Xw → T (F).

Two frames ϕ1 and ϕ2 are said to be statically equivalent if dom(ϕ1) =
dom(ϕ2) and for all r1, r2 ∈ T (F \ N ,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E

r2ϕ2. Intuitively, two frames are statically equivalent if an attacker cannot dis-
tinguish between the information they contain. A term u ∈ T (F) is deducible
from a frame ϕ with recipe r ∈ T (F \ N , dom(ϕ)) in equational theory E, de-
noted ϕ `rE u, if rϕ =E u. We often omit r and E and write ϕ ` u if they are
clear from the context.

An equational theory E0 is called trivial if u =E0 v for any terms u, v and
otherwise it is said to be non-trivial. For the rest of the paper, Fb and Fc are
signatures with disjoint sets of function symbols and (Fb, Eb) and (Fc, Ec) are
non-trivial equational theories. The combination of these two theories will be
(F , E) = (Fb ∪ Fc, Eb ∪ Ec).

3 Process syntax and semantics

In this section we introduce our process algebra for modeling security protocols
with coin tosses. This process algebra can be seen as an extension of the one
from [3]. Similar to [38], it extends the applied π-calculus by the inclusion of a
new operator for probabilistic choice. Like [3], the calculus doesn’t include else
branches and considers a single public channel.

Process Syntax: We assume a countably infinite set of labels L and an equiva-
lence relation ∼ on L that induces a countably infinite set of equivalence classes.
For l ∈ L, [l] denotes the equivalence class of l. We use Lb and Lc to range over
subsets of L such that Lb ∩ Lc = ∅ and both Lb and Lc are closed under ∼.
Each equivalence class is assumed to contain a countably infinite set of labels.
Operators in our grammar will come with a unique label from L, which together
with the relation ∼, will be used to mask the information an attacker can ob-
tain about actions of a process. So, when an action with label l is executed, the
attacker will only be able to infer [l].

The syntax of processes is introduced in Figure 1. We begin by introducing
what we call basic processes, denoted by B,B1, B2, ...Bn . In the definition of
basic processes, p ∈ [0, 1], l ∈ L, x ∈ X and ci ∈ {>, u = v}∀i ∈ {1, ..., k} where

8

Basic Processes
B ::= 0 νxl (x := u)l [c1 ∧ ... ∧ ck]l in(x)l out(u)l (B ·B) (B +l

p B)

Basic Contexts
D[�] ::= � B D[�] ·B B ·D[�] D[�] +l

p D[�]

Contexts [ai ∈ {νx, (x := u)}]
C[�1, ...,�m] ::= al11 · ... · alnn · (D1[�1]|...|Dm[�m])

Fig. 1: Process Syntax

u, v ∈ T (F \N ,X). In the case of the assignment rule (x := u)l, we additionally
require that x 6∈ vars(u). Intuitively, basic processes will be used to represent
the actions of a particular protocol participant. The 0 process does nothing. The
process νxl creates a fresh name and binds it to x while (x := u)l assigns the
term u to the variable x. The test process [c1 ∧ ... ∧ ck]l terminates if ci is > or
ci is u = v where u =E v for all i ∈ {1, ..., k} and otherwise, if some ci is u = v
and u 6=E v, the process deadlocks. The process in(x)l reads a term u from
the public channel and binds it to x and the process out(u)l outputs a term on
the public channel. The processes P ·l Q sequentially executes P followed by Q
whereas the process P +l

p Q behaves like P with probability p and like Q with
probability 1− p.

We will assume a countable set of process variables Xc, whose typical elements
will be denoted by �,�1, ...,�m. In Figure 1, basic contexts are obtained by
extending basic processes with a single process variable from Xc. Basic contexts
will be denoted by D[�], D1[�], D2[�], ..., Dn[�]. D1[B1] denotes the process
that results from replacing every occurrence of � in D1 by B1. A context is then
a sequential composition of fresh variable creations and variable assignments
followed by the parallel composition of a set of basic contexts. The prefix of
variable creations and assignments is used to instantiate data common to one or
more basic contexts. A process is nothing but a context that does not contain
any process variables. We will use C,C1, C2, ..., Cn to denote contexts and P ,
Q or R to denote processes. For a context C[�1, ...,�m] and basic processes
B1, ..., Bm, C[B1, ..., Bm] denotes the process that results from replacing each
process variable �i by Bi.

Definition 1. A context C[�1, ...,�m] = a1 · ... ·an ·(D1[�1]|...|Dm[�m]) is said
to be well-formed if every operator has a unique label and for any labels l1 and
l2 occurring in Di and Dj for i, j ∈ {1, 2, ...,m}, i 6= j iff [l1] 6= [l2].

For the remainder of this paper, contexts are assumed to be well-formed.
A process that results from replacing process variables in a context by basic
processes is also assumed to be well-formed. Unless otherwise stated, we will
always assume that all of the labels in a basic process come from the same
equivalence class.

9

Convention 1 For readability, we will omit process labels when they are not
relevant in a particular setting. Whenever new actions are added to a process,
their labels are assumed to be fresh and not equivalent to any existing labels of
that process.

For a process Q, fv(Q) and bv(Q) denote the set of variables that have some
free or bound occurrence in Q, respectively. The formal definition is standard
and is presented in Appendix A for completeness. Processes containing no free
variables are called ground.

Convention 2 We restrict our attention to processes that do not contain vari-
ables with both free and bound occurrences. That is, for a process Q, fv(Q) ∩
bv(Q) = ∅. This requirement can by met by α-renaming the bound variables in
Q.

We now give two examples that illustrate the type of protocols that can be
modeled and analyzed in our process algebra.

Example 1. A mix-network [19], is a routing protocol used to hide the origin of
messages that pass through it. This is achieved by routing messages through a
series of proxy servers, called mixes, which receive encrypted traffic from multiple
senders, shuffle the messages and forward them in random order. More formally,
assume there are users U1 and U2 that hold messages m1 and m2 intended for
recipients V1 and V2, respectively. In the case that a single mix sever is utilized,
each user Ui prepares a message of the form

aenc(aenc(mi, ni, pk(Vi)), n
′
i, pk(M))

and sends it to the mix M . After receiving the messages, the mix decrypts each
cipher text and outputs aenc(m1, pk(V1)) and aenc(m2, pk(V2)) in random order.
To describe mix networks using our process calculus, we begin by modeling the
the public key infrastructure using context below.

C[�0,�1,�2] = νk0 · νk1 · νk2 · (Dpk|D0[�0]|D1[�1]|D2[�2])
Dpk = out(pk(k0)) · out(pk(k1)) · out(pk(k2))

D0[�0] = (x0 := k0) ·�0

Di[�i] = (xi := pk(k0)) · (yi := pk(ki)) ·�i
The behavior of each user and the mix can be described by the processes:
Ui = νmi · νni · νn′i · out(aenc(aenc(mi, ni, yi), n

′
i, xi))

M = in(z1) · in(z2) · (c1 := adec(z1, x0)) · (c2 := adec(z2, x0))·
(out(c1) · out(c2) + 1

2
out(c2) · out(c1))

The entire system is C[M,U1, U2]. Provided the original messages appear in
random order and are not known to the attacker, the mix is designed to ensure
that its outputs cannot be linked to their original creator.

Example 2. In a simple DC-net protocol, two parties Alice and Bob want to
anonymously publish two confidential bits mA and mB , respectively. To achieve
this, Alice and Bob agree on three private random bits b0, b1 and b2 and output
a pair of messages according to the following scheme. In our specification of the
protocol, all of the private bits will be generated by Alice.

10

If b0 = 0 Alice: MA,0 = b1 ⊕mA, MA,1 = b2
Bob: MB,0 = b1, MB,1 = b2 ⊕mB

If b0 = 1 Alice: MA,0 = b1, MA,1 = b2 ⊕mA

Bob: MB,0 = b1 ⊕mB , MB,1 = b2

From the protocol output, the messages mA and mB can be retrieved as
MA,0⊕MB,0 and MA,1⊕MB,1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.
This protocol can be modeled using the equational theory built on the signature

FDC = {0, 1,⊕, senc, sdec, pair, fst, snd, valA, valB}

with the following equations.

sdec(senc(m, k), k) = m, fst(pair(x, y)) = x, snd(pair(x, y)) = y,
(x⊕ y)⊕ z = x⊕ (y ⊕ z), x⊕ 0 = x, x⊕ x = 0, x⊕ y = y ⊕ x,
val(m, 0, b1, b2, r) = pair(m⊕ b1, b2), val(m, 1, b1, b2, r) = pair(b1,m⊕ b2)

The roles of Alice and Bob in this protocol are defined in our process syntax as
follows.

A = ((b0 := 0) + 1
2

(b0 := 1)) · ((b1 := 0) + 1
2

(b1 := 1)) · ((b2 := 0) + 1
2

(b2 := 1)·
out(senc(pair(b0, pair(b1, b2)), k1) · νr · out(val(mA, b0, b1, b2, r))

B = in(z) · (y := sdec(z, k2)) · (b0 := fst(y)) · (b1 := fst(snd(y)))·
(b2 := snd(snd(y)))νr · out(val(mB , b0 ⊕ 1, b1, b2, r))

Notice that the output of Bob depends on the value of Alice’s coin flip. Because
our process calculus does not contain else branches, the required functionality is
embedded in the equational theory. Also notice that the communication between
Alice and Bob in the above specification requires a pre-established secret keys
k1, k2. These keys are established by first running some key exchange protocol,
which can be modeled by the context C[�1,�2] = νk · (k1 := k) · (k2 := k) ·
(�1|�2). If Alice holds the bit b and Bob holds the bit b′, the entire protocol is
C[(mA := b) ·A, (mB := b′) ·B].

Process Semantics: Given a process P , an extended process is a 3-tuple
(P,ϕ, σ) where ϕ is a frame and σ is a binding substitution. Semantically, a
ground process P is a POMDP [[P]] = (Z, zs,Act, ∆,O, obs), where Z is the set
of all extended processes, zs is (P, ∅, ∅), Act = (T (F \N ,Xw)∪{τ},L/ ∼) and ∆
is a partial function that maps an extended process and an action to a distribu-
tion. We now give some additional notation needed for the definition of ∆, O and
obs. By µ · Q, we mean the distribution µ1 such that µ1(P ′, ϕ, σ) = µ(P,ϕ, σ)
if P ′ is P ·Q and 0 otherwise. The distributions µ|Q and Q|µ are defined anal-

ogously. The definition of ∆ is given in Figure 2, where we write (P,ϕ, σ)
α−→ µ

if ∆((P,ϕ, σ), α) = µ. The notation ci ` > is used to denote the case when ci is
> or ci is u = v where vars(u, v) ⊆ dom(σ) and uσ =E vσ. Note that ∆ is well-
defined, as basic processes are deterministic and each basic process is associated
with a unique equivalence class. Given an extended process η, let enabled(η)

denote the set of all (§, [l]) such that for some µ, where (P,ϕ, σ)
(§,[l])−−−→ µ,

11

§ ∈ T (F \ N ,Xw) ∪ {τ} and l is the label of an input or output action. Let
ξ be a function from frames to frames such that if ϕ0 =E ϕ1 then ξ(ϕ0) = ξ(ϕ1)
and ξ(ϕ0) =E ϕ0. For a frame ϕ, we write [ϕ] to denote the equivalence class of
ϕ where EQ denotes the set of all such equivalence classes. For O = 2Act × EQ,
define obs as a function from extended processes to O such that for any extended
process η = (P,ϕ, σ), obs(η) = (enabled(η), ξ(ϕ)).

Definition 2. An extended process (Q,ϕ, σ) preserves the secrecy of x ∈ vars(Q)
in the equational theory (F , E), denoted (Q,ϕ, σ) |=E x, if there is no r ∈
T (F \ N , dom(ϕ)) such that ϕ `rE xσ. We write secret(x), for x ∈ vars(Q), to
represent the set of states of [[Q]] that preserve the secrecy of x. We also write
secret({x1, ..., xn}) to denote secret(x1)∩...∩secret(xn). The braces {, } will often
be omitted for ease of notation.

IN

r ∈ T (F \ N ,Xw) ϕ `r u x 6∈ dom(σ)

(in(x)l, ϕ, σ)
(r,[l])−−−−→ δ(0,ϕ,σ∪{x7→u}) NEW

x 6∈ dom(σ) n is a fresh name

(νxl, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x7→n})

OUT

vars(u) ⊆ dom(σ) i = |dom(ϕ)|+ 1

(out(u)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ∪{w(i,[l]) 7→uσ},σ) SEQ

Q0 6= 0 (Q0, ϕ, σ)
α−→ µ

(Q0 ·Q1, ϕ, σ)
α−→ µ ·Q1

TEST

∀i ∈ {1, ..., n}, ci ` >

([c1 ∧ ... ∧ cn]l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ) NULL

(Q0, ϕ, σ)
α−→ µ

(0 ·Q0, ϕ, σ)
α−→ µ

ASSG

vars(u) ⊆ dom(σ) x 6∈ dom(σ)

((x := u)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x7→uσ}) PARL

(Q0, ϕ, σ)
α−→ µ

(Q0|Q1, ϕ, σ)
α−→ µ|Q1

PROB (Q1 +lp Q2, ϕ, σ)
(τ,[l])−−−−→ δ(Q1,ϕ,σ)

+p δ(Q2,ϕ,σ)
PARR

((Q1, ϕ, σ)
α−→ µ

(Q0|Q1, ϕ, σ)
α−→ Q0|µ

Fig. 2: Process semantics

Notation 1 Note that for process P and variables x1, ..., xn ∈ vars(P),
secret({x1, ..., xn}) is a safety property of [[P]]. We shall write
P |=E,p secret({x1, ..., xn}) whenever [[P]] |=p secret({x1, ..., xn}).

We conclude this section by showing how the notion of trace equivalence can
capture privacy properties of the DC-net and mixnet protocols described earlier
in this section.

Example 3. Consider the mix network described in Example 1, called a threshold
mix. Unfortunately, this kind of mix does not ensure sender anonymity when
one considers an active attacker. It is vulnerable to what is known as an n − 1
(flooding) attack, where the attacker simply forwards some users messages along

12

with n− 1 dummy messages constructed by the attacker to the mix. When the
mix performs its output (flushes), the attacker can distinguish which of the n
output messages was not among the n − 1 dummy messages. The flaw in this
protocol can be captured by the trace relationship C[M,U1, U2] 6≈ C[M ′, U1, U2]
where M ′ = in(z1) · in(z2) · νc1 · νc2 · perm[out(c1), out(c2)]. Indeed, consider
the attacker for R = C[M,U1, U2] (resp. R′ = C[M ′, U1, U2]) that generates the
traces

obs((R, ∅, ∅)) (τ,[l1])−−−−→ ...
(τ,[lk])−−−−→ obs((M,ϕ, σ)))

obs((R′, ∅, ∅)) (τ,[l1])−−−−→ ...
(τ,[lk])−−−−→ obs((M ′, ϕ, σ)))

where ϕ is defined below.

w4,[l4] 7→ aenc(senc(m2, n1, pk(k2)), n′1, pk(k0)),
w3,[l3] 7→ aenc(senc(m1, n2, pk(k1)), n′2, pk(k0)),
w2,[l2] 7→ pk(k2), w1,[l1] 7→ pk(k1), w0,[l0] 7→ pk(k0)

and then forwards the recipes r1 = (aenc(aenc(0, n′′1 , w1,[l1]), n
′′
2 , w0,[l1]) and r2 =

w3,[l3]. Every permutation of the mix’s output in M corresponds to a differ-
ent trace as the attacker constructable term aenc(0, n′′1 , pk(k1)) is output in a
different position. In C[M ′, U1, U2] however, there is a single trace, as none of
the output messages can be distinguished. If the attacker instead chose r1 =
w4,[l4] then there would be a single trace t such that prob(t, C[M,U1, U2]) =
prob(t, C[M ′, U1, U2]) = 1.

Example 4. Consider the DC-net protocol defined in Example 2 which is de-
signed to insure that an observer of the protocol’s output can obtain Alice and
Bob’s bits but cannot distinguish the party to which each bit belongs. This
property can be modeled by the equivalence

C[(mA := 0) ·A|(mB := 1) ·B] ≈ C[(mA := 1) ·A|(mB := 0) ·B]

which says that any attacker for the DC-net protocol will observe identical prob-
abilities for every sequence of protocol outputs, regardless of the bits that Alice
and Bob hold in their messages.

4 Compositional equivalence of single session protocols

4.1 Disjoint Data

In the case of non-randomized protocols, it is well known that composition pre-
serves equivalence when protocols do not share data. Recall that we have in-
troduced a new notion of equivalence for randomized protocols wherein two
protocols P,Q are equivalent if, for every attacker A and trace t, the event t
has equal probability in the Markov chains PA and QA. A cornerstone of our
result establishes that parallel composition is a congruence with respect to this
equivalence when protocols do not share data.

Lemma 1. Let P, P ′, Q,Q′ be closed processes such that vars(P) ∩ vars(Q) = ∅
and vars(P ′) ∩ vars(Q′) = ∅. If P ≈ P ′ and Q ≈ Q′ then P |Q ≈ P ′|Q′.

13

In the absence of probabilistic choice, Lemma 1 is obtained by transforming an
attacker A for P |Q into an attacker A′ that “simulates” Q to P (and vice versa).
When a term created by Q is forwarded to P by A, the attacker A′ forwards a
new recipe in which the nonces in the term created by Q are replaced by fresh
nonces created by the adversary. This technique is not directly applicable in the
presence of randomness, where the adversary must forward a common term to
P in every indistinguishable execution of P |Q. For example, if the outputs n1
and h(n2) from Q are forwarded by A to P in two indistinguishable executions,
the recipe constructed by A′ must be identical for both executions. Further
complicating matters, if n2 is latter revealed by Q, the simulation of n1 and h(n2)
to P via a common term can introduce in-equivalences that were not present in
the original executions. We prove the result by showing P ≈ P ′ ⇒ P |Q ≈ P ′|Q
and Q ≈ Q′ ⇒ P |Q ≈ P |Q′, which together imply Lemma 1. Each sub-goal is
obtained by first inducting on the number of probabilistic choices in the common
process. In the case of P |Q ≈ P ′|Q, for example, this allows one to formulate an
adversary A for P |Q (resp. P ′|Q) as a combination of two disjoint adversaries.
We then appeal to a result on POMDPs where we prove that the asynchronous
product of POMDPs preserves equivalence.

4.2 Disjoint Primitives

In our composition result, we would like to argue that if two contexts C[�] and
C ′[�] are equivalent and two basic process B and B′ are equivalent, then the
processes C[B] and C ′[B′] are trace equivalent. In such a setup, contexts can
instantiate data (keys) that are used by and occur free in the basic processes.
This setup provides a natural way to model and reason about protocols that
begin by carrying out a key exchange before transitioning into another phase of
the protocol. Its worth pointing out that the combination of key exchange with
anonymity protocols can indeed lead to errors. For example, it was observed in
[48] that the RSA implementation of mix networks leads to a degradation in the
level of anonymity provided by the mix. The formalization of this result is as
follows.

Theorem 1. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|...|Dn[�n])
(resp. C ′[�1, ...,�n] = νk′1 · ... · νk′m · (D′1[�1]|...|D′n[�n])) be a context over Fc
with labels from Lc. Further let B1, ..., Bn (resp. B′1, ..., B

′
n) be basic processes

over Fb with labels from Lb. For l1, ..., ln ∈ Lb and] 6∈ Fb ∪Fc, assume that the
following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}
3. C[B1, ..., Bn] and C ′[B′1, ..., B

′
n] are ground

4. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′1, ..., B
′
n] |=E,1 secret(x′1, ..., x

′
n)

5. C[out(](x1))l1 , ..., out(](xn))ln] ≈ C ′[out(](x1))l1 , ..., out(](xn))ln]
6. νk·(x1 := k)·...·(xn := k)·(B1|...|Bn) ≈ νk·(x′1 := k)·...·(x′n := k)·(B′1|...|B′n)

Then C[B1, ..., Bn] ≈ C ′[B′1, ..., B′n].

14

Proof Sketch. The result is achieved by showing that if C[B1, ..., Bn] is not trace
equivalent to C ′[B′1, ..., B

′
n] then one of conditions 5 or 6 from Theorem 1 is

violated. More specifically, we use an offending trace t under an attacker A
for C[B1, ..., Bn] 6≈ C ′[B′1, ..., B

′
n], i.e. a trace such that the measure of t in

[[C[B1, ..., Bn]]]A is different from the measure of t in [[C ′[B′1, ..., B
′
n]]]A, to con-

struct a trace t′ that witnesses a violation of condition 5 or 6 from Theorem 1.
We can show that if C[B1, ..., Bn] 6≈ C ′[B′1, ..., B′n] then

C[out(](x1)), ..., out(](xn))]|B0 · (B1|...|Bn)

6≈
C ′[out(](x1)), ..., out(](xn))]|B′0 · (B′1|...|B′n)

(1)

where B0 and B′0 are processes that bind {x1, ..., xn} and {x′1, ..., x′n}, respec-
tively. This transformation is a non-trival extension of a result from [27, 3] which
allows a process P |Q, where P and Q share common variables but are over
disjoint signatures, to be transformed into an “equivalent” process P ′|Q′ where
variables are no longer shared. Variables of Q are re-initialized in Q′ accord-
ing to the equational equivalences they respect in an execution of P |Q. Unlike
nondeterministic processes, where executions are sequences, executions in ran-
domized processes form a tree where variables can receive different values in
different branches of the tree. From equation 1, we can apply Lemma 1 to
achieve either C[out(](x1)), ..., out(](xn))] 6≈ C ′[out(](x1)), ..., out(](xn))] or
B0 · (B1|...|Bn) 6≈ B′0 · (B′1|...|B′n). In the former case, we have contradicted
condition 5 of Theorem 1. If we achieve B0 · (B1|...|Bn) 6≈ B′0 · (B′1|...|B′n), we
additionally need to transform an adversary that witnesses the in-equivalence
to an adversary that witnesses the in-equivalence νk · (x1 := k) · ... · (xn :=
k) · (B1|...|Bn) 6≈ νk · (x′1 := k) · ... · (x′n := k) · (B′1|...|B′n). The presence of ran-
domness makes this transformation tricky, as illustrated by Example 5 below.

Example 5. Define B1 = out(h(x1)), B2 = in(y) · (out(y) + 1
2
out(h(x1))) and

B′2 = in(y) · (out(h(x1)) + 1
2
out(h(x1))) in the processes below.

– P, P ′ = νk1 · (x1 := k1) ·B1

– Q = νk2 · (x1 := k2) ·B2

– Q′ = νk2 · (x1 := k2) ·B′2
Consider the adversary A that forwards the output of P (resp. P ′) to Q (resp.

Q′) and then runs B2 (resp. B′2). A is a witness to the in-equivalence of P |Q
and P ′|Q′, but it does not witness the inequivalence of νk1 · (x1 := k1) · (B1|B2)
and νk1 · (x1 := k1) · (B1|B′2). We can, however, transform the attacker A to an
attacker A′ such that witnesses

νk1 · (x1 := k1) · (B1|B2) 6≈ νk1 · (x1 := k1) · (B1|B′2).

The details of this transformation can be found in Lemma 17.

Below, we demonstrate the application of Theorem 1 to reason about the
security of the DC-net protocol from Example 2, where Diffie-Hellman is used
for key exchange.

15

Example 6. Let A,B be the protocols for Alice and Bob from the DC-net proto-
col given in Example 2. Let FDH = {f, g,mac} be the signature for the equational
theory

EDH = {f(g(y), x) = f(g(x), y)}.

This equational theory models the Diffie-Hellman primitives, i.e. f(x, y) = xy mod p,
g(y) = αy mod p for some group generator α. We use mac for a keyed hash func-
tion. Define C[�1,�2] = νkh · D1[�1]|D2[�2] to be the context that models a
variant of the Diffie-Hellman protocol where D1 and D2 are below.

D1 = νx · out(g(x)) · out(mac(g(x), kh)) · in(z)·
in(z′) · [z′ = mac(z, kh)] · (k1 := f(x, z)) ·�1

D2 = νy · out(g(y)) · out(mac(g(y), kh)) · in(z)·
in(z′) · [z′ = mac(z, kh)] · (k2 := f(y, z)) ·�2

We want to show the equivalence C[(mA := 0) ·A|(mB := 1) ·B] ≈ C[(mA :=
1) ·A|(mB := 0) ·B]. Using the results established in Theorem 1, the verification
effort is reduced to verifying the following set of simpler properties, where K =
νk · (k1 := k) · (k2 := k).

1. K · ((ma := 0) ·A|(mb := 1) ·B) ≈ K · ((ma := 1) ·A|(mb := 0) ·B)
2. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′1, ..., B

′
n] |=E,1 secret(x′1, ..., x

′
n)

The latter properties can also be verified modularly using the results from
[9].

4.3 Difficulties arising from randomization

In the setup from Theorem 1, observe that C[�], C ′[�] contain process (free)
variables. As a result, trace equivalence cannot directly be used to equate these
objects. One natural notion of equivalence between C[�] and C ′[�] is achieved by
requiring C[B0] ≈ C ′[B0] under all assignments of � to a basic process B0. While
mathematically sufficient for achieving composition, such a definition creates a
non-trivial computational overhead. Instead, our result is able to guarantee safe
composition when C[B0] ≈ C ′[B0] for a single instantiatation of B0. A natural
selection for B0 is the empty process [>]. We illustrate why such a choice is
insufficient in Example 7.

Example 7. Consider the contexts defined below.

C[�1,�2] = νk1 · νk2 · ((x1 := k1) ·�1|(x2 := k1) ·�2 + 1
2

(x2 := k2) ·�2)

C ′[�1,�2] = νk1 · νk2 · ((x1 := k1) ·�1|(x2 := k1) ·�2 + 1
2

(x2 := k1) ·�2).

Notice that C and C ′ differ in that C assigns x2 to k1 and C ′ assigns x2
to k1. For the basic processes B1 = out(h(x1)) and B2 = out(h(x2)). We have
C[[>], [>]] ≈ C ′[[>], [>]] but C[B1, B2] 6≈ C ′[B1, B2]. This is because for any ad-
versary A, C[[>], [>]]A and C ′[[>], [>]]A both have the same set of traces. How-
ever, there is an adversary A′ such that the only trace of C ′[B1, B2]A

′
outputs

h(k1), h(k1). For C[B1, B2]A
′

there are two traces, one that outputs h(k1), h(k2)
and another that outputs h(k1), h(k1).

16

The problematic behavior arising in Example 7 occurs when basic processes
reveal equalities among the shared secrets from the context. Revealing these
equalities may, in some cases, allow the attacker to infer the result of a pri-
vate coin toss. Consequently, our composition theorem must require contexts to
remain secure even when such equalities are revealed. As was the case with com-
position contexts, our result also relies on a notion of equivalence between basic
processes B and B′ that contain free variables. As was the case with equivalence
between contexts, universal quantification over the free variables results in a
non-trivial computational overhead. However, we are able to show that when B
is not trace equivalent to B′ under some instantiation the free variables, then B
and B′ can also be shown to be trace inequivalent when all of the free variables
take the same value. This allows us to prove a stronger result by requiring a
weaker condition on the equivalence between B and B′.

In Theorem 1, condition 4 requires that the composed processes do not reveal
the shared secrets with probability 1. As in [9], one might also be interested in
the quantitative version of this result, where the probability of revealing the
shared secrets is below a given threshold. Unfortunately, condition 4 cannot be
relaxed, as shown by Example 8 below.

Example 8. Consider the contexts

C[�] = νk1 · (x1 := k1) ·� · in(y) · νk2·
[y = x1] · out(ok)

C ′[�] = νk1 · (x1 := k1) ·� · in(y) · νk2·
[y = k2] · out(ok)

and the basic process B = νn·out(x1)+ 1
2
νn·out(n). Observe that C[B] |=E, 12

secret(x1) and
C ′[B] |=E, 12

secret(x1). Furthermore,

C[out(#(x1))] ≈ C ′[out(#(x1))]

and νk · (x1 := k) ·B ≈ νk · (x1 := k) ·B. However, C[B] 6≈ C ′[B].

Another subtle component of Theorem 1 is condition 1, which allows each
basic process to share only a single variable with the context. As demonstrated
Example 9, the composition theorem does not hold when this restriction is re-
laxed.

Example 9. Consider the context and processes below.

C[�] = νk1 · νk2 · νk3 · (x1 := k1)·
(x2 := k2) · (x3 := k3) ·�

B1 = out(senc(x1, x3)) · out(senc(x1, x3))
B2 = out(senc(x1, x3)) · out(senc(x1, x2))

For B0 = νk · (x1 := k) · (x2 := k) · (x3 := k) we have B0 ·B1 ≈ B0 ·B2 but
C[B1] 6≈ C[B2].

17

4.4 Shared primitives through tagging

Theorem 1 requires that the context and basic processes don’t share crypto-
graphic primatives. To extend the result to processes that allow components of
the composition to share primitives, such as functions for encryption, decryption
and hashing, we utilize a syntactic transformation of a protocol and its signa-
ture called tagging. When a protocol is tagged, a special identifier is appended
to each of the messages that it outputs. On input, the protocol recursively tests
all subterms of the input message to verify their tags are consistent with the
protocol’s tag. If this requirement is not met, the protocol deadlocks. The de-
tails of our tagging scheme, which are simailar to the ones given in [3, 27], can be
found in Appendix D. In Theorem 2, we show that an attack on a composition
of two tagged protocols originating from the same signature can be mapped to
an attack on the composition of the protocols when the signatures are explicitly
made disjoint. Given a context C[�1, ...,�n] and basic processes B1, ..., Bn we
write dC[B1, ..., Bn]e to denote the tagged version of C[B1, ..., Bn]. Our tagging
result considers the fixed equational theory where Fsenc = {senc, sdec, h} and
Esenc = {sdec(senc(m, k), k) = m}. For this theory, we define a signature renam-
ing function d which transforms a context C over the signature (Fsenc, Esenc) to
a context Cd by replacing every occurrence of the function symbols senc, sdec
and h in C by sencd, sdecd and hd, respectively.

Theorem 2. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|...|Dn[�n])
(resp. C ′[�1, ...,�n] = νk′1 · ... ·νk′m · (D′1[�1]|...|D′n[�n])) be a context over Fsenc

with labels from Lc. Further let B1, ..., Bn (resp. B′1, ..., B
′
n) be basic processes

over Fsenc with labels from Lb. For l1, ..., ln ∈ Lb and] 6∈ Fb ∪ Fc, assume that
the following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}
3. C[B1, ..., Bn] and C ′[B′1, ..., B

′
n] are ground

4. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′1, ..., B
′
n] |=E,1 secret(x′1, ..., x

′
n)

5. C[out(](x1))l1 , ..., out(](xn))ln] ≈ C ′[out(](x1))l1 , ..., out(](xn))ln]
6. νk·(x1 := k)·...·(xn := k)·(B1|...|Bn) ≈ νk·(x′1 := k)·...·(x′n := k)·(B′1|...|B′n)

Then dCc[Bb1, ..., Bbn]e ≈ d(C ′)c[(B′1)b, ..., (B′n)b]e.

5 Compositional equivalence for multi-session protocols

In this section, we extend our composition result to protocols that can run
multiple sessions. Our focus will be on protocols that have a single occurrence of
the replication operator appearing in the context. This restriction simplifies the
statement of the results and proofs. However, it is possible to extend our results
to protocols with a more general framework for replication. Formally, a context
with replication is over the following grammar.

C[�1, ...,�m] ::= al11 · ... · alnn ·!l(D1[�1]|...|Dm[�m])

18

where a ∈ {νx, (x := u)}. The semantics of this new replication operator are
given in Figure 3, where i ∈ N is used to denoted the smallest previously unused
index. We will write P (i) to denote that process that results from renaming
each occurrence of x ∈ vars(P) to xi for i ∈ N. When P (i) is relabeled freshly as
in Figure 3, the new labels must all belong to the same equivalence class (that
contains only those labels).

REPL

P (i) is relabeled freshly

(!lP,ϕ, σ)
(τ,l)−−−→ δ(P (i)|!lP,ϕ,σ)

Fig. 3: Replication semantics

Our semantics imposes an explicit variable renaming with each application
of a replication rule. The reason for this is best illustrated through an example.
Consider the process !in(x) · P and the execution

(!in(x) · P, ∅, ∅)→∗ (in(x) · P |!in(x) · P,ϕ, {x 7→ t} ∪ σ)

where variable renaming does not occur. This execution corresponds to the at-
tacker replicating !in(x)·P , running one instance of in(x)·P and then replicating
!in(x) · P again. Note that, because x is bound at the end of the above execu-
tion, the semantics of the input action cause the process to deadlock at in(x).
In other words, an attacker can only effective run one copy of !in(x) · P for any
process of the form !in(x) · P .

Our composition result must prevent messages from one session of a process
from being confused with messages from another sessions. We achieve this by
introducing an occurrence of νλ directly following the replication operator. This
freshly generated “session tag” will then be used to augment tags occurring in the
composed processes. Recall that for any POMDPs M1 and M2, if M1 6≈M2 there
exists an adversary A and trace t such that prob(t, [[M1]]A) = prob(t, [[M2]]A).
This trace t must have finite length and subsequently M1,M2 can only perform
a bounded number of replication actions in t. This means one can transform
M1,M2,A, t to an adversaryA′, trace t′ andM ′1,M

′
2 such that prob(t′, [[M ′1]]A

′
) =

prob(t′, [[M ′2]]A
′
) where M ′1,M

′
2 do not contain replication. This is achieved by

syntactically unrolling the replication operator |t| times in M1 (resp. M2). The
result below is a consequence of the preceding observation and Theorem 2.

Theorem 3. Let C[�1, ...,�n] = νk1 · ... · νkm·!νλ · (D1[�1]|...|Dn[�n]) (resp.
C ′[�1, ...,�n] = νk′1 · ... · νk′m·!νλ · (D′1[�1]|...|D′n[�n])) be a context over Fsenc

with labels from Lc. Further let B1, ..., Bn (resp. B′1, ..., B
′
n) be basic processes

over Fsenc with labels from Lb. For l1, ..., ln ∈ Lb and] 6∈ Fb ∪ Fc, assume that
the following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}

19

3. C[B1, ..., Bn] and C ′[B′1, ..., B
′
n] are ground

4. λ 6∈ vars(C[B1, ..., Bn]) ∪ vars(C ′[B′1, ..., B
′
n])

5. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′1, ..., B
′
n] |=E,1 secret(x′1, ..., x

′
n)

6. C[out(](x1))l1 , ..., out(](xn))ln] ≈ C ′[out(](x1))l1 , ..., out(](xn))ln]

7. νk·(x1 := k)·...·(xn := k)·(B1|...|Bn) ≈ νk·(x′1 := k)·...·(x′n := k)·(B′1|...|B′n)

Then dνk1 · ... · νkm·!νλ · (D(c,λ)
1 [B

(b,λ)
1] | ... | D(c,λ)

n [B
(b,λ)
n])e ≈ dνk′1 · ... ·

νk′m·!νλ · ((D′1)(c,λ)[(B′1)(b,λ)] | ... | (D′n)(c,λ)[(B′n)(b,λ)])e.

6 Conclusion

We have considered the problem of composition for randomized security proto-
cols, initially analyzing protocols with a bounded number of sessions. Formally,
consider trace equivalent protocols P and Q over equational theory Ea, and trace
equivalent protocols P ′ and Q′ over equational theory Eb. We showed that the
composition of P and P ′ with Q and Q′ preserves trace equivalence, provided Ea
and Eb are disjoint. The same result applies to the case when both equational
theories coincide and consist of symmetric encryption/decryption and hashes,
provided each protocol message is tagged with a unique identifier for the protocol
to which it belongs. Finally, we show that the latter result extends to protocols
with an unbounded number of sessions, as long as messages from each session
of the protocol are tagged with a unique session identifier. For future work, we
plan to investigate protocols that allow dis-equality tests amongst messages. We
also plan to investigate the composition problem when the equational theories
coincide and contain other cryptographic primitives in addition to symmetric
encryption/decryption and hashes.

References

1. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. ACM SIGPLAN Notices, 36(3):104–115, 2001.

2. Suzana Andova, Cas J. F. Cremers, Kristian Gjøsteen, Sjouke Mauw, Stig Fr.
Mjølsnes, and Sasa Radomirovic. A framework for compositional verification of
security protocols. Information and Computation, 206(2-4):425–459, 2008.

3. Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. Verifying privacy-type
properties in a modular way. In 25th IEEE Computer Security Foundations Sym-
posium (CSF’12), pages 95–109, 2012.

4. Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. Composing security
protocols: from confidentiality to privacy. In Proceedings of the 4th International
Conference on Principles of Security and Trust (POST’15), volume 9036, pages
324–343, 2015.

5. Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinka-
bility and anonymity using the applied pi calculus. In 2010 23rd IEEE Computer
Security Foundations Symposium, pages 107–121, 2010.

20

6. Myrto Arapinis, Stéphanie Delaune, and Steve Kremer. From one session to many:
Dynamic tags for security protocols. In 15th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR’08), pages 128–
142, 2008.

7. Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto
Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, et al. The avantssar platform for the automated validation of trust
and security of service-oriented architectures. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 267–282, 2012.

8. Mathieu Baudet. Deciding security of protocols against off-line guessing attacks.
In Proc. 12th Conference on Computer and Communications Security (CCS’05),
pages 16–25, 2005.

9. Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan. Composing protocols
with randomized actions. In Proceedings of the 5th International Conference on
Principles of Security and Trust - Volume 9635, pages 189–210, 2016.

10. Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair proto-
col for signing contracts. IEEE Transactions on Information Theory, 36(1):40–46,
1990.

11. Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. In 20th Annual IEEE Symposium on
Logic in Computer Science (LICS’05), pages 331–340, 2005.

12. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, P. Pereira, and R. Segala.
Task-Structured Probabilistic I/O Automata. In Workshop on Discrete Event
Systems, 2006.

13. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01),
pages 136–145, 2001.

14. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols (extended abstract). In Proc.
3rd Theory of Cryptography Conference (TCC’06), pages 380–403, 2006.

15. R. Chadha, A. P. Sistla, and M. Viswanathan. Verification of randomized security
protocols. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS’ 17), 2017.

16. R. Chadha, A.P. Sistla, and M. Viswanathan. Model checking concurrent pro-
grams with nondeterminism and randomization. In the International Conference
on Foundations of Software Technology and Theoretical Computer Science, pages
364–375, 2010.

17. K. Chatzikokolakis and C. Palamidessi. Making Random Choices Invisible to the
Scheduler. Information and Computation, 2010, to appear.

18. David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of cryptology, 1(1):65–75, 1988.

19. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

20. L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University of Nijmegen, 2006.

21. Céline Chevalier, Stéphanie Delaune, and Steve Kremer. Transforming password
protocols to compose. In 31st Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 204–216, 2011.

22. Yannick Chevalier and Michaël Rusinowitch. Decidability of equivalence of sym-
bolic derivations. Journal of Automated Reasoning, 2010. To appear.

21

23. Stefan Ciobâca. Verification and composition of security protocols with applications
to electronic voting. PhD thesis, ENS Cachan, 2012.

24. Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely composing se-
curity protocols. In Proc. 27th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’07), pages 352–363, 2007.

25. Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In Proc. 22nd IEEE Computer Security Foundations Symposium
(CSF’09), pages 266–276, 2009.

26. Véronique Cortier and Stéphanie Delaune. Safely composing security protocols.
Formal Methods in System Design, 34(1):1–36, 2009.

27. Ştefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary primi-
tives. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 322–336, 2010.

28. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

29. L. de Alfaro. The Verification of Probabilistic Systems under Memoryless Partial
Information Policies is Hard. In PROBMIV, 1999.

30. Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security, 17(4):435–487,
2009.

31. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Composition of password-
based protocols. In Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF’08), pages 239–251, 2008.

32. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

33. Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

34. Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic Protocol Analysis Modulo Equational Properties, pages 1–50. 2009.

35. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

36. F.D. Garcia, P. van Rossum, and A. Sokolova. Probabilistic Anonymity and Ad-
missible Schedulers. CoRR, abs/0706.1019, 2007.

37. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing
information. In Proceedings of the First International Workshop on Information
Hiding, pages 137–150, 1996.

38. Jean Goubault-Larrecq, Catuscia Palamidessi, and Angelo Troina. A probabilistic
applied pi–calculus. In Asian Symposium on Programming Languages and Systems,
pages 175–190, 2007.

39. Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh S. Venkatesh. Dos
protection for reliably authenticated broadcast. In NDSS, 2004.

40. Joshua D. Guttman. Authentication tests and disjoint encryption: A design method
for security protocols. Journal of Computer Security, 12(3-4):409–433, 2004.

41. Joshua D. Guttman. Cryptographic protocol composition via the authentication
tests. In the Foundations of Software Science and Computational Structures, 12th
International Conference (FOSSACS 2009), pages 303–317, 2009.

42. Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, and John C.
Mitchell. A modular correctness proof of ieee 802.11i and TLS. In the 12th ACM
Conference on Computer and Communications Security, (CCS 2005), pages 2–15,
2005.

22

43. Charles Antony Richard Hoare. Communicating sequential processes, volume 178.
1985.

44. Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic sym-
bolic model checker. In International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, pages 200–204, 2002.

45. Catherine Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. IEEE journal on selected areas in communications, 21(1):44–
54, 2003.

46. Catherine Meadows. Emerging Issues and Trends in Formal Methods in Crypto-
graphic Protocol Analysis: Twelve Years Later, pages 475–492. 2015.

47. Sebastian Mödersheim and Luca Viganò. Sufficient conditions for vertical compo-
sition of security protocols. In Proceedings of the 9th ACM Symposium on Infor-
mation, Computer and Communications Security, pages 435–446, 2014.

48. Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct rsa-
implementation of mixes. In Workshop on the Theory and Application of of Cryp-
tographic Techniques, pages 373–381, 1989.

49. Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security (TISSEC), 1(1):66–92,
1998.

50. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In 14th Computer Security Foundations Workshop (CSFW’01),
pages 174–190, 2001.

51. P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. Prêt à voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security, 4(4):662–673, 2009.

52. Steve Schneider and Abraham Sidiropoulos. Csp and anonymity. In European
Symposium on Research in Computer Security, pages 198–218, 1996.

53. Vitaly Shmatikov. Probabilistic analysis of an anonymity system. Journal of
Computer Security, 12(3, 4):355–377, 2004.

A Auxiliary definitions

For a basic process B, we define bv(B), fv(B) as the set of variables that have a
bound or free occurrence in B, respectively. Likewise, abv(B) denotes the set of
variables for which every occurrence in B is bound.

23

bv(B), abv(B), fv(B) =



bv(B) = abv(B) = {x}, if B = νx
fv(B) = ∅

bv(B) = abv(B) = {x}, if B = (x := u)
fv(B) = vars(u)

bv(B) = abv(B) = ∅, if B = [c1 ∧ ... ∧ ck]
fv(B) = vars(c1) ∪ ... ∪ vars(ck)

bv(B) = abv(B) = {x}, if B = in(x)
fv(B) = ∅

bv(B) = abv(B) = ∅, if B = out(u)
fv(B) = vars(u)

bv(B1) ∪ bv(B2), if B = B1 ·B2

abv(B1) ∩ abv(B2),
fv(B1) ∪ fv(B2)

bv(B1) ∪ bv(B2), if B = B1 +p B2

abv(B1) ∪ abv(B2),
fv(B1) ∪ (fv(B2) \ abv(B1))

We can lift the preceding definition to a basic context D by requiring that
bv(�) = abv(�) = fv(�) = ∅ for any process variable �. Let C be a context of
the form B · (D1(�1)|...|Dm(�m)) where B = a1 · ... · an. Define

bv(C) = bv(B) ∪ bv(D1) ∪ ... ∪ bv(Dm)

and

fv(C) = fv(B) ∪ ((fv(D1) ∪ .. ∪ fv(Dm)) \ bv(B)).

The definitions of bv and fv extend naturally to processes which can always be
written as a context without process variables.

For some examples, it is necessary permute the order in which a set of ac-
tions a ∈ {νx, (x := u), [c1 ∧ ... ∧ ck], in(x), out(u)} are executed. We introduce
the shorthand perm[a1, ..., an] for such an operation, which is defined induc-
tively using the basic probabilistic choice operator as follows. If n = 2, then
perm[a1, a2] = a1 + 1

2
a2. Inductively, if n > 2, then perm[a1, ..., an] is

P1 + 1
n

(P2 + 1
n−1

(P3 + 1
n−2

...(Pn−1 + 1
2
Pn)...)

where Pi = ai · perm[a1, ..., ai−1, ai+1, ..., an].

24

B Proof preliminaries

We begin by recalling some definitions from [27, 23]. Let (Fb, Eb) and (Fc, Ec) be
disjoint nontrivial equational theories and E = Eb∪Ec. Further let N andM be
sets of private and public names, respectively. We partition N into Na]Nb]Nc
and M into Ma]Mb]Mc. From these partitions, define the d-domain, for
d ∈ {b, c}, to be Dd = Fd ∪ Nd ∪ Md. Similarly we define the a-domain as
Da = Na ∪Ma ∪ X ∪ Xw. For the rest of this section, d ∈ {b, c} and d denotes
{b, c} \ d. The set of all pure d-terms is T (Dd,X) and the set of all pure a-terms
is T (Na∪Ma,X ∪Xw). A term is pure if it is a pure e-term for some e ∈ {a, b, c}.
For a term u,

root(u) =

{
f if u = f(u1, ..., un)
u if u is an atom

and domain(u) = e ∈ {a, b, c} iff root(u) ∈ De. A term context is a term with
holes, denoted 1, ..., k. A pure d-term context is H ∈ T (Dd, { 1, ..., k}). If H
is non-empty term context such that H 6= 1, then we define domain(H) =
domain(root(H)). We will write H[[u1, ..., uk]] for a term H[u1, ..., uk] if H is a
pure non-empty term context and domain(H) 6= domain(uj) for all j ∈ {1, ..., k}.
The terms u1, ..., uk are called alien subterms of H[u1, ..., uk]. Given a set of
frame variables Xw, let X dw = {wi,[l] | wi,[l] ∈ Xw ∧ [l] ∈ Ld}.

Definition 3. Let s̃ = s1, ..., s` be a sequence of terms and ñ = nb1, ..., n
b
`, n

c
1, ..., n

c
`

be a sequence of fresh private names such that nb1, ..., n
b
` ∈ N b, nc1, ..., n

c
` ∈ N c

and ndi = ndj iff si = sj for all d ∈ {b, c} and i, j ∈ {1, ..., `}. For e ∈ {b, c},
define the function Rñs̃,e : T (Db ∪ Dc)→ T (Db ∪ Dc) as follows.

Rñs̃,e(u) =


nei if root(u) 6∈ De and u =E si for i ∈ {1, ...`}
f(Rñs̃,d(u1), ..., Rñs̃,d(uk)) if t = f(u1, ..., uk) and f ∈ Dd
u otherwise (when u is an atom)

Definition 4. Let u be a term and col(u) be a function such that

col(u) =

u if u is an atom
vi if u = f(u1, ..., u`) is collapsable to vi
f(col(u1), ..., col(u`)) otherwise

where a term f(u1, ..., u`) is collapsable to vi if f(col(u1), ..., col(ul)) = H[[v1, ..., vk]]
and H[[n1, ..., nk]] =Ed ni where ni, ..., nk are fresh names such that ni = nj iff
vi =E vj for all i, j ∈ {1, ..., `} and d ∈ domain(H).

Let O : N → N be a 1 to 1 function. In case 2 of Definition 4, if u =
f(u1, ..., u`) is collapsible to to vi and vj for i, j ∈ {1, ..., `} then we pick vi such
that O(vi) < O(vj). We can easily extend col to a substitution σ by requiring
col(σ)(x) = col(σ(x)) for all x ∈ dom(σ).

Lemma 2 ([23]). For any term u, col(u) =E u.

25

Lemma 3 ([23]). Fix d ∈ {b, c}. For f ∈ Fd and terms u1, ..., u` we have

col(f(u1, ..., u`)) = col(f(col(u1), ..., col(u`))).

Lemma 4 ([23]). (Fundamental Collapse Lemma) If u =E v, then col(u) =
H1[[u1, ..., uk]] and col(v) = H2[[uk+1, ..., uk+`]] are such that domain(H1) =
domain(H2) and H1[n1, ..., nk] =Ed H2[nk+1, ..., nk+`] where d ∈ domain(H1) and
n1, ..., nk+` fresh names such that ni = nj iff ui =E uj for all 1 ≤ i, j ≤ k + `.

For the remainder of this section, let s̃ = s1, ..., s` be a sequence of terms
and ñ = nb1, ..., n

b
`, n

c
1, ..., n

c
` be a sequence of fresh private names such that

nb1, ..., n
b
` ∈ N b, nc1, ..., n

c
` ∈ N c and ndi = ndj iff si = sj for all d ∈ {b, c} and

i, j ∈ {1, ..., `}.

Lemma 5 ([23]). Fix d ∈ {b, c}. If u =E v, then Rñs̃,d(col(u)) =E Rñs̃,d(col(v)).

Lemma 6 ([23]). Let ϕ be a frame and r be a recipe over ϕ such that ϕ 6`r′ si
for any i ∈ {1, ..., `} and for any sub-recipe r′ of r. Then for any d ∈ {b, c},
rRñs̃,d(col(ϕ)) =E Rñs̃,d(col(rϕ)).

Because E is stable by replacement of names for equivalent terms, we have
the following.

Definition 5. Let u1, u2 be terms and n ∈ st(u1) ∪ st(u2). If u1 =E u2 and
v1, v2 are terms such that v1 =E v2 then u1{n 7→ v1} =E u2{n 7→ v2}.

Lemma 7. Let ϕ and ϕ′ be frames over T (Db∪Dc) such that dom(ϕ) = dom(ϕ′)
and wi,[l]ϕ

′ = Rñs̃,d(col(wi,[l]ϕ)). If ϕ 6` s̃ and ϕ′ 6` s̃ then ϕ ≡ ϕ′.

Proof. We need to show that for any two recipes r1 and r2, r1ϕ =E r2ϕ iff
r1ϕ
′ =E r2ϕ

′. Assume r1ϕ =E r2ϕ. By Lemma 5,Rñs̃,d(col(r1ϕ)) =E Rñs̃,d(col(r2ϕ)).

Because ϕ 6` s̃, we can apply Lemma 6 to both sides, yielding r1R
ñ
s̃,d(col(ϕ)) =E

r2R
ñ
s̃,d(col(ϕ)). By the definition of ϕ′, we have r1ϕ

′ =E r2ϕ
′ as desired. The

other direction follows by Definition 5. ut

For any two executions ρ0, ρ1 we say that ρ0 is a prefix of ρ1, denoted ρ0 � ρ1,
if ρ1 = ρ0

α0−→ ...
αk−−→ zk. The prefix operation � is extended to traces in the

natural way. For a process P and an adversary A, we will write MExec([[P]]A)
to denote the subset of Exec([[P]]A) that contains only maximal executions. A
trace t is said to be maximal for [[P]]A if t = tr(ρ) where ρ ∈ MExec([[P]]A). The
set of all attackers will be denoted by A.

Proposition 1. Let P,Q be processes such that P 6≈ Q. There exist an adver-
sary A and a trace t that is maximal for [[P]]A and [[Q]]A such that prob(t, [[P]]A) 6=
prob(t, [[Q]]A).

Definition 6. Let P = P1, P2 (resp. Q = Q1, Q2) be a sequence of processes
and A be an attacker for P1, P2. Further Let Λ : A → A be a function and
δ : MExec([[P1]]A)]MExec([[P2]]A) → MExec([[Q1]]Λ(A))]MExec([[Q2]]Λ(A)) be a
bijection such that the following hold.

26

1. For any ρ ∈ MExec([[Pi]]
A), prob(ρ, [[PA]]) = prob(δ(ρ), [[Q

Λ(A)
i]])

2. For any ρ0, ρ1 ∈ MExec([[P1]]A)]MExec([[P2]]A), tr(ρ0) = tr(ρ1) iff tr(δ(ρ0)) =
tr(δ(ρ1)).

Then P is said to be transposable to Q by Λ.

Lemma 8. Let (P1, P2) be transposable to (Q1, Q2). If P1 6≈ P2 then Q1 6≈ Q2.

Proof. LetA be an adversary and t be a trace such that prob(t, PA1) 6= prob(t, PA2).
Let ρ1, ..., ρk ∈ MExec([[P1]]A) (resp. ρ′1, ..., ρ

′
l ∈ MExec([[P2]]A)) be the executions

such that tr(ρi) = t (resp. tr(ρ′j) = t) for all i ∈ {1, ..., k} (resp. j ∈ {1, ..., l}).
By property 2 of Definition 6 there exists a trace t′ such that for the executions
δ(ρ1), ..., δ(ρk) ∈ MExec([[Q1]]Λ(A)) (resp. δ(ρ′1), ..., δ(ρ′l) ∈ MExec([[Q2]]Λ(A)))
tr(δ(ρi)) = t′ (resp. tr(δ(ρ′j)) = t′) for all i (resp. j). By property 1 of Defi-

nition 6, prob(t′, Q1
Λ(A)) = prob(t, PA1) 6= prob(t, PA2) = prob(t′, Q

Λ(A)
2). ut

B.1 Disjoint Variables

A process is called atomic if it can derived from the grammar:

A ::= νxl (x := u)l [c1 ∧ ... ∧ ck]l in(x)l out(u)l

where ci ∈ {>, s = t} for all i ∈ {1, ..., k}. We will use a to denote atomic
processes. A process is called linear if it can be derived from the grammar L ::=
A | (L·A) where A is an atomic process. Let P be a process andA be an adversary
for P . For any ρ ∈ Exec([[P]]A), define the linear process L(ρ) inductively as

follows. For the base case L((P, ∅, ∅)) = ε. For the inductive case, let ρ = ρ0
(§,[l])−−−→

z′n. If l is the label of an atomic action a, then L(ρ) = L(ρ0) · a. Otherwise l is
the label of a probabilistic choice and L(ρ) = L(ρ0) · [T]l.

Proposition 2. Let P be a process, A be an adversary for P and ρ ∈ Exec([[P]]A).
There exists an adversary A′ for L(ρ), an execution ρ′ ∈ Exec([[L(ρ)]]A

′
), a frame

ϕ and a substitution σ such that last(ρ) = (Q,ϕ, σ) and last(ρ′) = (Q′, ϕ, σ).

A process is called deterministic if it can be derived from the following gram-
mar.

D ::= a D +p D a ·D

The concatenation of two deterministic process, denoted D1 ◦ D2, is defined
below.

D1 ◦D2 =


a ·D2 if D1 = a

D
′

1 ·D2 +p D
′′

1 ·D2 D1 = D
′

1 +p D
′′

1

a · (D′1 ◦D2) D1 = a ·D′1

27

For a basic process B, its expansion to a deterministic process, denoted exp(B),
is defined as follows.

exp(B) =


a if B = a
a · exp(B′) if B = a ·B′
exp(B1) +p exp(B2) if B = B1 +p B2

exp(B1) ◦ exp(B′) +p if B = (B1 +p B2) ·B′
exp(B2) ◦ exp(B′)

The set of interleavings for the parallel composition of deterministic processes
is given in Figure 4, and will be denoted by I(P) for a process P .

D ∈ I(D1|...|Dm)

a ·D ∈ I(D1|...|Di−1|a|Di+1|...|Dm)

D ∈ I(D1|...|Di|...|Dm)

a ·D ∈ I(D1|...|a ·Di−1|...|Dm)

D′ ∈ I(D1|...|D′i|...|Dm) D′′ ∈ I(D1|...|D′′i |...|Dm)

D′ +p D
′′ ∈ I(D1|...|D′i +p D

′′
i |...|Dm)

Fig. 4. Interleavings for parallel composition of basic processes

Recall that a process Q takes the form a1 · ... · an · (B1|...|Bm) where ai ∈
{νx, (x := t)}. If D ∈ I(exp(B1)|...|exp(Bm)), then a1 · ... · an · D ∈ I(P).
Notice that I(Q) is a deterministic process. Further, for any adversary A and
process Q there exists a deterministic process D ∈ I(Q) such that Exec([[D]]A) =
Exec([[Q]]A) modulo a renaming of variables. We will write I(Q,A) to denote
such a deterministic process. For a bitstring ω, if a ∈ {νx, in(x), (x := t)}, let
aω be νxω, in(xω) or (xω := t), respectively. For any deterministic process D
and bitstring ω, let Dω be

Dω =


a if D = a and a 6∈ a
aω if D = a and a ∈ a
a ·Dω

0 if D = a ·D0 and a 6∈ a
aω ·Dω

0 {x 7→ xω} if D = a ·D0 and a ∈ a
Dω0

0 +p D
ω1
1 if D = D0 +p D1

for a = {νx, in(x), (x := t)}. By construction, Dω is such that for any adversary
A and ρ1, ρ2 ∈ Exec([[Dω]]A) if last(ρ1) = (D1, ϕ1, σ1), last(ρ2) = (D2, ϕ2, σ2) and
x ∈ dom(σ1) ∩ dom(σ2) then xσ1 = xσ2. Let ρ1, ..., ρm = MExec([[Dω]]A) where

last(ρj) = (Dj , ϕj , σj) for all j ∈ {1, ...,m}. Define bind(Dω,A) =
⋃j=m
j=1 σj . For

any process Q, let QbLb be the result of replacing, in Q, every occurrence of a

variable x that occurs in an atomic process al, where l ∈ Lb, by the variable xb.
For the remainder of this section, let i ∈ {1, ..., n}, S = {x1, ..., xn} and

C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|D2[�2]|...|Dn[�n])

28

C ′[�1, ...,�n] = νk′1 · ... · νk′m · (D′1[�1]|D′2[�2]|...|D′n[�n])

be contexts over Fc with labels from Lc, B1, ..., Bn (resp. B′1, ..., B
′
n) be basic

processes over Fb with labels from Lb and assume that the conditions of Theorem
1 hold. Let A be an adversary for C[B1, ..., Bn] and C ′[B′1, ..., B

′
n]. Define

SD = {xω | xω ∈ vars(I(C[B1, ..., Bn],A)ε) ∧ x ∈ vars(S)}

and
S′D = {xω | xω ∈ vars(I(C ′[B′1, ..., B

′
n],A)ε) ∧ x ∈ vars(S)}.

Let M = max(|SD|, |S′D|).

Definition 7. Define ∆(C[B1,, Bn],A,M) to be the process

[T]1 · ... · [T]s · νk′1 · ... · νk′v·
(yb1 := z1) · ... · (ybv := zv)· (I(C[B1, ..., Bn],A)ε)bLb

such that {y1, ..., yv} = SD, zj ∈ {k′1, ..., k′v} and for all zj , zh we have zj = zh
iff σA(yj) =E σA(yh) for σA = bind(C[B1, ..., Bn],A). We also require that s is
chosen such that s+ 2v = M .

In Definition 7, every atomic action in the prefix [T]1 · ... · [T]s · νk′1 · ... · νk′v ·
(yb1 := z1) · ... · (ybv := zv) is labeled sequentially with l1, ..., l2v+s ∈ Lb. We can
similarly define ∆(C ′[B′1,, B

′
n],A,M). Let disA : A → A be as follows. If A′

is not an adversary for ∆(C[B1,, Bn],A,M) then disA(A′) is undefined on all
traces. Otherwise disA(A′) is such that A′(t) = α then disA(A′)(t0t) = α where

t0 = o0
(τ,[l1])−−−−→ ...

(τ,[l2v+s])−−−−−−→ o2v+s. On all other traces, disA(A′) is undefined. In
what follows, when we write ρ reveals S for some ρ ∈ Exec([[P]]) and S ⊆ vars(P)
we mean that there exists an x ∈ S such ϕ ` xσ where last(ρ) = (P ′, ϕ, σ).
We will also assume that B1, ..., Bn and C[�1, ...,�n] only share the variables
S = {x1, ..., xn}. We will write varsb(C[B1, ..., Bn]) and varsc(C[B1, ..., Bn]) to
denote the sets

⋃n
i=1 vars(Bi) \ xi and vars(C[�1, ...,�n]) \ S respectively.

Lemma 9. Let A be an adversary for P0 = C[B1, ..., Bn] and P1 = C ′[B′1, ..., B
′
n].

If Q0 = ∆(P0,A,M) and Q1 = ∆(P1,A,M) then P0, P1 is transposble to Q0, Q1

by the function disA.

Proof. Observe that Exec([[P0]]A) = Exec([[I(P0,A)]]A) and I(P0,A) is the same
as I(P0,A)ε modulo renaming of variables. Likewise, Exec([[P1]]A) = Exec([[I(P1,A)]]A)
and I(P1,A) is the same as I(P1,A)ε modulo renaming of variables. Thus, it
suffices to show I(P0,A)ε, I(P0,A)ε is transposable to Q0, Q1 by disA. We de-

fine a bijection δ : MExec(I(P0,A)ε)]MExec(I(P1,A)ε) → MExec([[Q0]]dis
A

)]
MExec([[Q1]]dis

A
). The definition of δ is only given on executions of MExec([[I(P0,A)ε]]A),

it can be naturally extended to executions of MExec([[I(P1,A)ε]]A). Let disA(A) =
A′ and P ′0 = I(P0,A)ε. Define a bijection

δ0 : MExec([[P ′0]]A)→ MExec([[Q0]]A
′
)

29

as follows. To begin, let ρ0 = (Q0, ∅, ∅)
(τ,[l])−−−→ ...

(τ,[l])−−−→ ((R0)bLb , ∅, σ0) for l ∈
Lb and dom(σ) = {k′1, ..., k′v, yb1, ..., ybv} be an execution of MExec([[Q0]]A

′
) such

that |ρ0| = M . Now consider any ρ ∈ MExec([[P ′0]]A) where (R0, ϕ0, σ0)
α1−→

...
αm−−→ (Rm, ϕm, σm). Define ρ′ = ((R0)bLb , ϕ

′
0, σ
′
0)

α1−→ ...
αm−−→ ((Rm)bLb , ϕ

′
m, σ

′
m)

where for all j ∈ {1, ...,m}, ϕ′j and σ′j are as follows. If σA = bind(P1,A),

s̃ = {σA(y1), ..., σA(yv)} and ñ = {σ0(yb1), ..., σ0(ybv)}:

1. σ′j = σ0 ∪ {zb | z ∈ dom(σ) ∪ varsb(P ′0)} ∪ {z | z ∈ dom(σ) ∪ varsc(P ′0)}
– σ′j(z) = Rñs̃,b(col(σj(z))) for all z ∈ dom(σ′j)

– σ′j(z
b) = Rñs̃,b(col(σj(z))) for all zb ∈ dom(σ′j)

2. dom(ϕ′j) = dom(ϕj)

– wi,[l]ϕ
′
j = Rñs̃,b(col(wi,[l]ϕj))

Define δ0(ρ) = ρ0ρ
′. Let SD = {xω | xω ∈ vars(P ′0) and x ∈ S} and S′D =

SD ∪ {(xω)b | (xω)b ∈ vars(Q0) and x ∈ S}. Consider any ρ ∈ MExec([[P ′0]]A).
By condition 4 of Theorem 1 ρ 6` secret(SD). Applying Proposition 2, the linear
process L(ρ) 6` secret(SD). Furthermore, L(ρ) and L(δ0(ρ)) meet the conditions
of Theorem 1 from [27], allowing one to conclude that L(δ0(ρ)) 6` secret(S′D)

and δ0(ρ) ∈ MExec([[Q0]]A
′
). Proposition 2 again yields δ0(ρ) 6` secret(S′D). In

particular, this means that ρ 6` s̃ and δ0(ρ) 6` s̃ and we can apply Lemma 7 to
conclude ϕ ≡ ϕ′ and hence obs(last(ρ)) = obs(last(δ0(ρ))). As noted previously,
we can similarly define a bijection δ1 : MExec(I(P1,A)ε)→ MExec([[Q1]]A

′
) that

satisfies the properties above. Let δ = δ0]δ1. We have thatA′ is a valid adversary
for Q0, Q1 and property 2 of Definition 6 holds. Clearly property 1 also holds by
the definition of δ. ut

B.2 POMDP Result

We first fix some notation. Let Mi = (Zi, z
s
i ,Acti, ∆i,Oi, obsi) be a POMDP for

i ∈ {1, 2}. We will assume that Z1 ∩ Z2 = ∅ and Act1 ∩ Act2 = ∅. The asyn-
chronous product ofM1 andM2, denotedM1⊗M2, is the POMDP (Z, zs,Act, ∆,O, obs)
where Z = {(z1, z2) | z1 ∈ Z1 ∧ z2 ∈ Z2}, zs = (zs1, z

s
2), Act = Act1 ∪ Act2,

O = {(o1, o2) | o1 ∈ O1 ∧ o2 ∈ obs2}, obs(z1, z2) = (obs1(z1), obs2(z2)) and ∆ is
defined below.

∆((z1, z2), α)((z′1, z
′
2)) =

∆1(z1, α)(z′1) if z2 = z′2 ∧ α ∈ Act1
∆2(z2, α)(z′2) if z1 = z′1 ∧ α ∈ Act2
0 otherwise.

Let A be an adversary for M1 ⊗M2. We will assume Exec([[(M1 ⊗M2)]]A) is
finite and every execution is of finite length. For ρ ∈ Exec([[(M1 ⊗M2)]]A), we
define its projection onto Mi, denoted πi(ρ) inductively as follows. If ρ = (zs1, z

s
2),

πi(ρ) = zsi . Otherwise ρ = ρ0
α−→ (z1, z2) and we distinguish two cases. If α ∈ Acti

then πi(ρ) = π(ρ0)
α−→ zi and if α 6∈ Acti then πi(ρ) = πi(ρ0). The projection

of a trace t of M1 ⊗M2 is defined analogously and will be denoted πi(t). As a

30

shorthand, for a state z = (z′, z′′) we will write z1 for z′ and z2 for z′′. For an
observation o, o1 and o2 are defined similarly.

For a state z, POMDP M , adversaryA and ρ ∈ Exec([[M]]A) let probz(ρ,MA)
be the measure of the event ρ starting from state z in [[M]]A. Additionally, for
an observation o and trace t, let ρ1, ..., ρm be the executions of Exec([[M]]A) such
that tr(ρj) = t and its initial state is zj where obs(zj) = o for all j ∈ {1, ...,m}.
Define probo(t,MA) =

∑m
j=1 prob

zj (ρj ,M
A). Finally, for states z, z′ and action

α, define transz((α, z′),MA) to be the probability of transitioning to z′ from z
by the action α in [[M]]A.

Definition 8. Let A be an adversary for M = M1 ⊗ M2 and t be a trace.
Define projti(A,M) as follows. For any trace t′, projti(A,M)(t′) = A(t0) if t0 is
a maximal trace such that t0 � t and πi(t0) = t′. Otherwise projti(A,M)(t′) is
undefined.

Lemma 10. Let A be an adversary for M1 ⊗ M2 and t be a trace. If Ai =
projti(A,M1⊗M2) then prob(t, (M1⊗M2)A) = prob(π1(t),MA1

1)×prob(π2(t),MA2
2).

Proof. The proof is by induction on the length of t, where the |t| is defined

to be the number of actions in t. For the base case, let |t| = os
α−→ o′ and

assume without loss of generality that α ∈ Act1. We have prob(π2(t),MA2
2) =

prob(obs(zs2),MA2
2) = 1 and hence prob(t, (M1 ⊗M2)A) = prob(π1(t),MA1

1).

For the induction step, let t = os
α−→ t0. We can assume without loss of

generality that α ∈ Act1 identifies an atomic action in M1 ⊗M2. Hence os =
(os1, o

s
2) and the first observation of t0 is o = (o′1, o

s
2). Let ρ1, ..., ρm ∈ Exec([[M1⊗

M2]]A) be the executions such that tr(ρj) = t for j ∈ {1, ...,m}. Further let

ρj = zs
α−→ ρ′j and observe that every ρ′j must have the same initial state

z′ = (z′1, z
s
2). We have prob(t, (M1 ⊗M2)A) is

transz
s

((α, z′), (M1 ⊗M2)A)×
∑m
j=1 prob

z′(ρ′j , (M1 ⊗M2)A).

Because t = os
α−→ t0, we have tr(ρj) = t0 and

∑m
j=1 prob

z′(ρ′j , (M1 ⊗M2)A) =

probo(t0, (M1 ⊗M2)A). Let M ′1 be the same as M1 with the exception that its
initial state is (z′1, z

s
2) and A′ be the adversary for M ′1 ⊗M2 such that A′(t) =

A(os
α−→ t). If A′i = projti(A′,M ′1 ⊗M2), we have probo(t0, (M1 ⊗M2)A)

= prob(t0, (M
′
1 ⊗M2)A

′
)

= prob(πi(t0), (M ′1)A
′
1)× prob(π2(t0),M

A′2
2)

= probo1(π1(t0),MA1
1)× probo2(π2(t0),MA2

2)

where the second equality follows by the induction hypothesis and the first and
third equalities follows by the definition of M ′1 and A′. Let ρ′′1 , ..., ρ

′′
l be the

executions of [[M1]]A1 such that tr(ρ′′k) = π1(t0) for k ∈ {1, ..., l}. Again, for
every ρ′′k , its initial state must be z′1. Observe that

probo1(π1(t0),MA1
1) =

∑l
k=1 prob

z′1(ρ′′k ,M
A
1).

Furthermore, because α ∈ Act1, it must be the case that

31

transz
s

((α, z′), (M1 ⊗M2)A) = transz
s
1 ((α, z′1),MA1

1)

and probo2(π(t0),MA2
2) = prob(π(t0),MA2

2). Putting everything together we
have prob(t, (M1 ⊗M2)A) is equal to

transz
s
1 ((α, z′1),MA1

1)×
∑l
k=1 prob

z′1(ρ′′k ,M
A
1)× prob(π2(t0),MA2

2)

which is the same as prob(π1(t0),MA1
1)× prob(π2(t0),MA2

2). ut

Lemma 11. If M1 ≈M ′1 then M1 ⊗M ≈M ′1 ⊗M .

Proof. Assume for a contradiction that M1⊗M 6≈M ′1⊗M . By definition, there
exists a trace t and adversary A such that prob(t, (M1 ⊗M)A) 6= prob(t, (M ′1 ⊗
M)A). Let A1 = projt1(A,M1⊗M) = projt1(A,M ′1⊗M) and A2 = projt2(A,M1⊗
M) = projt2(A,M ′1⊗M). By Lemma 10, prob(π1(t),MA1

1)× prob(π2(t),MA2) 6=
prob(π1(t), (M ′1)A1) × prob(π2(t),MA2) and subsequently prob(π1(t),MA1

1) 6=
prob(π1(t), (M ′1)A1) follows from the fact that prob(π2(t),MA2) 6= 0 if prob(t, (M1⊗
M)A) 6= prob(t, (M ′1 ⊗M)A). That is, M1 6≈M ′1, contradiction. ut

Lemma 12. If M1 ≈M ′1 and M2 ≈M ′2, then M1 ⊗M2 ≈M ′1 ⊗M ′2.

Proof. Follows from Lemma 11. ut

C Proof of Theorem 1

For the remainder of this section, let i ∈ {1, ..., n}, S = {x1, ..., xn} and

C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|D2[�2]|...|Dn[�n])

C ′[�1, ...,�n] = νk′1 · ... · νk′m · (D′1[�1]|D′2[�2]|...|D′n[�n])

be a contexts over Fc with labels from Lc, B1, ..., Bn (resp. B′1, ..., B
′
n) be basic

processes over Fb with labels from Lb and assume that the conditions of Theorem
1 hold. We will henceforth refer to the preceding conditions by †.

By convention, the labels from each Bi come from different equivalence
classes, which we will denote by ∼i.

Lemma 13. Let C,C ′ and B1, ..., Bn (resp. B′1, ..., B
′
n) be as above. If C[B1, ..., Bn] 6≈

C ′[B′1, ..., B
′
n] then

C[out(](x1)) ·B1, ..., out(](xn)) ·Bn]
6≈

C ′[out(](x1)) ·B′1, ..., out(](xn)) ·B′n].

Proof. Let P1 = C[B1, ..., Bn], P2 = C ′[B′1, ..., B
′
n], P ′1 = C[out(](x1))·B1, ..., out(](xn))·

Bn] and P ′2 = C ′[out(](x1)) · B′1, ..., out(](xn)) · B′n]. We will assume that
out(](x1)), ..., out(](xn)) are labeled by l1, ..., ln ∈ Lb. Define a projection π
from executions of P ′1 (resp. P ′2) to executions of P1 (resp. P2) inductively as
follows. If ρ ∈ Exec([[P ′1]]) (resp. ρ ∈ Exec([[P ′2]])), contains no actions, then

32

π(P ′1, ∅, ∅) = (P1, ∅, ∅) (resp. π(P ′2, ∅, ∅) = (P2, ∅, ∅)). Inductively, let ρ = ρ0
α−→ z

for α = (§, [l]). If l = li then π(ρ) = π(ρ0). Otherwise π(ρ) = π(ρ0)
α−→ z′.

The projection π can be extended to traces in the following way. For a trace t,
π(t) = tr(π(ρ′)) where ρ′ is any execution such that tr(ρ′) = t. This extension is
well defined. From π we can define an adversary A′ for P ′1 (resp. P ′2) from an ad-
versary A for P1 (resp. P2) in the following way. For a trace t, if A(π(t)) = (§, [l])
where l ∈∼i and t doesn’t contain the action (τ, [li]), then A′(t) = (τ, [li]). Other-
wise A′(t) = A(π(t)). Let ρ, ρ1, ρ2 ∈ MExec([[P ′k]]A

′
) for k ∈ {1, 2}. First observe

that prob(ρ, (P ′k)A
′
) = prob(π(ρ), Pk

A) by our definition of A′. Furthermore, if
tr(π(ρ1)) 6= tr(π(ρ2)) then tr(ρ1) 6= tr(ρ2). Because P1 6≈ P2, by Proposition 1,
there is an adversary A and trace t that is maximal for [[P1]]A and [[P2]]A such
that prob(t, [[P1]]A) 6= prob(t, [[P2]]A). Let t1, ..., tk be the traces of (P ′1)A

′
, (P ′2)A

′

such that π(tj) = t for all j ∈ {1, ..., k}. We have

prob(t, [[P1]]A) =

k∑
j=1

prob(tj , [[P
′
1]]A

′
)

and

prob(t, [[P2]]A) =

k∑
j=1

prob(tj , [[P
′
2]]A

′
).

By the preceding observations,

k∑
j=1

prob(tj , [[P
′
1]]A

′
) 6=

k∑
j=1

prob(tj , [[P
′
2]]A

′
)

and thus there must be some j such that prob(tj , [[(P
′
1]]A

′
) 6= prob(tj , [[P

′
2]]A

′
).

That is, P ′1 6≈ P ′2. ut

Lemma 14. Let ϕ0, ϕ
′
0, ϕ1, ϕ

′
1 be frames and N0,N1 be sets of names such that

N0 ∩N1 = ∅ and the following hold.

1. ∀u ∈ ran(ϕ0) ∪ ran(ϕ′0) and ∀wi,[l] ∈ dom(ϕ0) ∪ dom(ϕ′0):
– u ∈ T (F ∪N0 ∪M) and l ∈ Lb

2. ∀u ∈ ran(ϕ1) ∪ ran(ϕ′1) and ∀wi,[l] ∈ dom(ϕ1) ∪ dom(ϕ′1):
– u ∈ T (F ∪N1 ∪M) and l ∈ Lc

3. ϕ = ϕ0 ∪ ϕ1 and ϕ′ = ϕ′0 ∪ ϕ′1

Then ϕ ≡ ϕ′ iff ϕ0 ≡ ϕ1 and ϕ′0 ≡ ϕ′1.

Proof. “⇒” We show the contrapositive. Assume without loss of generality that
ϕ0 6≡ ϕ′0. That is, dom(ϕ) 6= dom(ϕ′) or there exist recipes r1, r2 such that
r1ϕ0 =E r2ϕ0 and r1ϕ

′
0 6=E r2ϕ

′
0 (or vice versa, in which case the result follows

by a similar argument). If dom(ϕ) 6= dom(ϕ′) then the result is immediate.
Otherwise the free variables in r1, r2 must come from dom(ϕ0) = dom(ϕ′0) and
thus they have the form wi,[l] for l ∈ Lb. By definition, for all such wi,[l], we have

33

wi,[l]ϕ0 = wi,[l]ϕ and wi,[l]ϕ
′
0 = wi,[l]ϕ

′. That is, r1ϕ =E r2ϕ and r1ϕ
′ 6=E r2ϕ

′,
which means that ϕ 6≡ ϕ′.

“⇐” We show the contrapositive. Assume that ϕ 6≡ ϕ′. Then there exists
recipes ra, rb such that raϕ =E rbϕ and raϕ

′ 6=E rbϕ
′ (or vice versa, in which

case the result follows by a similar argument). If dom(ϕ) 6= dom(ϕ′) or ra, rb ∈
dom(ϕ) then the result is immediate. In what follows, we will assume that for all
wi,[l1], wj,[l2] ∈ dom(ϕ), we have wi,[l1]ϕ =E wj,[l2]ϕ iff wi,[l1]ϕ

′ =E wj,[l2]ϕ
′. Let

υ be a function on terms such that υ(t1) = υ(t2) iff t1 =E t2 and υ(t1) ∈ [t1].
Let ϕ̃ (resp. ϕ̃′) be the frame that results from replacing every u ∈ ran(ϕ) (resp.
u ∈ ran(ϕ′)) by υ(u). Clearly, for any recipe r, rϕ =E rϕ̃ and rϕ′ =E rϕ̃′. Let
M0 : N0 → M0 and M1 : N1 → M1 be bijections such that M0 ∩ M1 = ∅,
M0,M1 ⊂ M and no names in M0,M1 occur in ϕ,ϕ′. For some name k ∈ N0

(resp. k ∈ N1), we will write M0
k (resp. M1

k) to denote the value of k under such a
bijection. Given a term u, we will write M0(u) (resp. M1(u)) to denote the term
that results from replacing in u, every k ∈ N0 (resp. k ∈ N1) by M0

k (resp. M1
k).

Let r0a, r
0
b (resp. r1b , r

1
b) be the recipes that result from replacing every subrecipe

u = wi,[l] in r0a, r
0
b (resp. r1b , r

1
b) where l ∈ Lc (resp. l ∈ Lb) by the recipe M1(uϕ)

(resp. M0(uϕ)). By Definition 5, for any recipe r, we have rϕ̃ =E r0ϕ̃ =E r1ϕ̃
and rϕ̃′ =E r0ϕ̃′ =E r1ϕ̃′. Given this, it must be the case that either

r0aϕ̃ =E r0b ϕ̃ and r0aϕ̃
′ 6=E r0b ϕ̃

′

or
r1aϕ̃ =E r1b ϕ̃ and r1aϕ̃

′ 6=E r1b ϕ̃
′.

Because the free variables of r0a, r
0
b are over dom(ϕ0) and the free variables of

r1a, r
1
b are over dom(ϕ1) we can conclude, by a similar argument as the previous

direction that either ϕ0 6≡ ϕ′0 or ϕ1 6≡ ϕ′1. ut

Definition 9. Let L be a set of labels closed under ∼. An adversary A for a
process R is said to be pure with respect to L if whenever A chooses an action
(r, [l]), we have r ∈ (F ,XLw).

Lemma 15. Let P, P ′ be processes such that vars(P) ∩ vars(Q) = vars(P ′) ∩
vars(Q) = ∅. If P ≈ P ′ then P |Q ≈ P ′|Q.

Proof. The proof is by induction on the number of probabilistic choices in Q. For
the base case, let Q be a process that doesn’t contain probabilistic choice and
assume for a contradiction that P |Q 6≈ P ′|Q. Define S = {k | νk occurs in Q}
to be the set of all variable names that can be bound by the ν operator in Q.
Further let M ⊂ M be a set of names not occurring in P, P ′ and Q such that
there exists a bijection from M to S. We will write Mk to denote the element of M
mapped to by k ∈ S under this bijection. Define Q′ as the process that results
from replacing, in Q, every occurrence of an atomic action νk by (k := Mk).
We have that if P |Q 6≈ P ′|Q then P |Q′ 6≈ P ′|Q′, which is a straightforward
consequence of Definition 5.

By convention, we can assume that P, P ′ are labeled by Lb and Q is labeled
by Lc. Let A be an adversary and t be a trace such that prob(t, (P |Q′)A) 6=

34

prob(t, (P ′|Q′)A). From A, we define an adversary A′ for P |Q′ and P ′|Q′ that is
pure with respect to Lb as follows. Let ρ ∈ Exec([[P |Q′]]A) be such that tr(ρ) = t
and last(ρ) = (R,ϕ, σ). Define mappings Θρ : dom(σ) ∩ vars(Q′) → T (F ∪
M, dom(ϕ)) and Φρ : dom(ϕ)→ T (F ∪M, dom(ϕ)) by induction on the length
of ρ. If ρ contains no actions then dom(σ) = dom(ϕ) = ∅. Inductively let ρ =

ρ0
α−→ z. We distinguish 4 cases.
case 1: α does not execute an output action or an input/assignment action

that binds a variable in dom(σ) ∩ vars(Q′). Define Θρ = Θρ0 and Φρ = Φρ0 .
case 2: α executes output action of the form out(u) where u ∈ T (F , dom(σ)).

Define Θρ = Θρ0 . The output action must bind a frame variable wj,[l] to the value
uσ. If l ∈ Lc then Φρ(wj,[l]) = uΘρ0 . Otherwise, if l ∈ Lb then Φρ(wj,[l]) = wj,[l].

case 3: α executes a action of the form in(x) from Q′. The action α must be
of the form (r, [l]). Define Θρ(x) = rΦρ0 and Φρ = Φρ0 .

case 4: α executes a action of the form (x := u) fromQ′ where u ∈ T (F , dom(σ)).
Define Θρ(x) = uΘρ0 and Φρ = Φρ0 .

We extend Φρ to actions by requiring that Φρ(τ, [l]) = (τ, [l]) and Φρ(r, [l]) =
(rΦρ, [l]). Now if

t′ = obs(z0)
α0−→ ...

αk−1−−−→ obs(zk)

is a prefix of t and A(t′) = αk let

A′(obs(z0)
V ′ρ(α0)−−−−→ ...

V ′ρ(αk−1)−−−−−−→ obs(zk)) = V ′ρ(αk).

In all other cases, A′ is undefined. To see that A′ is well defined, one can
show that ρ ∈ Exec([[P |Q′]]A) iff ρ ∈ Exec([[P |Q′]]A′) and prob(ρ, (P |Q′)A) =
prob(ρ, (P |Q′)A′) by a simple induction on the length of ρ. By a similar argument,
we have ρ′ ∈ Exec([[P ′|Q′]]A) iff ρ′ ∈ Exec([[P ′|Q′]]A′) and prob(ρ′, (P ′|Q′)A) =
prob(ρ,′ (P ′|Q′)A′). The preceding facts imply that A′ is an adversary for P |Q′
and P ′|Q′ such that prob(t, (P |Q′)A) = prob(t, (P |Q′)A′) and prob(t, (P ′|Q′)A) =
prob(t, (P ′|Q′)A′). That is prob(t′, (P |Q′)A′) 6= prob(t′, (P ′|Q′)A′). By our con-
struction, A′ doesn’t use an recipes output by Q′. By Lemma 14 and Lemma
11, we can conclude that P 6≈ P ′, contradiction.

For the induction step, assume for a contradiction that P |Q 6≈ P ′|Q. Let
Q′ be the result of replacing, in Q, some occurrence of a subprocess Q0 +p

Q1 by out(0)l0 · Q0 +p out(1)l1 · Q1 where 0, 1 are fresh unary constant sym-
bols. Define a projection π from executions of P |Q′ (resp. P ′|Q′) to execu-
tions of P |Q (resp. P ′|Q) inductively as follows. If ρ ∈ Exec([[P |Q′]]) (resp.
ρ ∈ Exec([[P ′|Q′]])) contains no actions, then π(P |Q′, ∅, ∅) = (P |Q, ∅, ∅) (resp.

π(P ′|Q′, ∅, ∅) = (P ′|Q, ∅, ∅)). Inductively, let ρ = ρ0
α−→ z for α = (§, [l]). If

l ∈ {l0, l1} then π(ρ) = π(ρ0). Otherwise π(ρ) = π(ρ0)
α−→ z. The projection

π can be extended to traces by requiring that π(t) = tr(π(ρ)). From π we can
define an adversary A′ for P |Q′ (resp. P ′|Q′) from an adversary A for P |Q (resp.
P ′|Q) in the following way. For a trace t, if A(π(t)) = (§, [l]) where l occurs in Q0

(resp. Q1) and t doesn’t contain the action (τ, [l0]) (resp. (τ, [l1])), then A′(t) =
(τ, [l0]) (resp. A′(t) = (τ, [l1])). Otherwise A′(t) = A(π(t)). Clearly we have
prob(ρ, (P |Q)A) = prob(π(ρ), (P |Q′)A′) and prob(ρ, (P ′|Q)A) = prob(π(ρ), (P ′|Q′)A′).

35

Furthermore, for any ρ1, ρ2 ∈ Exec([[P |Q′]]A′) (resp. ρ1, ρ2 ∈ Exec([[P ′|Q′]]A′)) if
tr(ρ1) 6= tr(ρ2) then tr(π(ρ1)) 6= tr(π(ρ2)). Because P |Q 6≈ P ′|Q there is an ad-
versary A and trace t such that prob(t, (P |Q)A) 6= prob(t, (P ′|Q)A). Let t1, ..., tv
be the traces of (P |Q′)A′ , (P ′|Q′)A′ such that tr(tj) = t for all j ∈ {1, ..., v}.
By the preceding observations, there is some j such that prob(tj , (P |Q′)A

′
) 6=

prob(tj , (P
′|Q′)A′) and hence P |Q′ 6≈ P ′|Q′. Let ρ0, ρ1 ∈ Exec([[P |Q′]]A′) (resp.

ρ0, ρ1 ∈ Exec([[P ′|Q′]]A′)) be executions such that ρ0 contains the action (τ, [l0])
and ρ1 contains the action (τ, [l1]). We have tr(ρ0) 6= tr(ρ1). From this, we can
conclude that P |Q′0 6≈ P ′|Q′0 or P |Q′1 6≈ P ′|Q′1 where Q′0 (resp. Q′1) is the process
that results from replacing, in Q, some occurrence of the subprocess Q0 +p Q1

by Q0 (resp. Q1). By the induction hypothesis, we have thatP |Q′0 ≈ P ′|Q′0 and
P |Q′1 ≈ P ′|Q′1, contradiction. ut

Lemma 16. Let P, P ′, Q,Q′ be processes such that vars(P) ∩ vars(Q) = ∅ and
vars(P ′) ∩ vars(Q′) = ∅. If P ≈ P ′ and Q ≈ Q′ then P |Q ≈ P ′|Q′.

Proof. By Lemma 15, we have P |Q ≈ P ′|Q and P ′|Q ≈ P ′|Q′ from which the
result follows. ut

Lemma 17. Let P, P ′, Q,Q′ be processes such that vars(P)∩vars(Q) = {x} and
vars(P ′) ∩ vars(Q′) = {x}. If νx · (P |Q) ≈ νx · (P ′|Q′) then

νx1 · P{x 7→ x1}|νx2 ·Q{x 7→ x2}
≈

νx1 · P ′{x 7→ x1}|νx2 ·Q′{x 7→ x2}.

Proof. We begin by showing that νx·P ≈ νx·P ′ and νx·Q ≈ νx·Q′. We only give
the agruement for νx·P ≈ νx·P ′ as the case of νx·Q ≈ νx·Q′ is similar. Assume
for a contradiction that νx · P 6≈ νx · P ′. Let t = obs(z0)

α1−→ ...
αm−−→ obs(zm)

be a trace such that obs(zk) = (enabled(zk), υ(ϕk)). Define t|Q to be the trace

o′0
α1−→ ...

αm−−→ o′m such that o′k = (enabled(zk)∪ enabled(Q, ∅, ∅), υ(ϕk)). Because
νx · P 6≈ νx · P ′, there exists an adversary A and trace t such that prob(t, (νx ·
P)A) 6= prob(t, (νx · P ′)A). Define A′ to be the adversary for νx · (P |Q) and
νx · (P ′|Q′) such that A′(t|Q) = A(t). For any execution ρ ∈ Exec([[P]]A) (resp.

ρ ∈ Exec([[P ′]]A)) of the form (νx · P, ∅, ∅) α1−→ ...
αk−−→ (P0, ϕ0, σ0) let ρ|Q be the

execution (νx · (P |Q), ∅, ∅) α1−→ ...
αk−−→ (P0|Q,ϕ0, σ0). For any executions ρ1, ρ2 ∈

Exec([[νx ·P]]A) we have ρ1|Q, ρ2|Q ∈ Exec([[νx · (P |Q)]]A
′
) where the measure of

ρ1 is the same as the measure of ρ1|Q and tr(ρ1) = tr(ρ2) iff tr(ρ1|Q) = tr(ρ2|Q).
That is, prob(t|Q, (νx·(P |Q))A

′
) = prob(t, (νx·(P |Q))A). By a similar argument,

we can conclude that prob(t|Q′, (νx · (P ′|Q′))A′) = prob(t, (νx · (P ′|Q′))A). That
is, prob(t|Q, (νx · (P |Q))A

′
) 6= prob(t|Q′, (νx · (P ′|Q′))A′) and hence νx · (P |Q) 6≈

νx · (P ′|Q′), contradiction. Given that νx · P ≈ νx · P ′ and νx ·Q ≈ νx ·Q′ the
result follows by Lemma 16. ut

Lemma 18. Assuming †, we have C[B1, ..., Bn] ≈ C ′[B1, ..., Bn].

Proof. Assume for a contradiction that C[B1, ..., Bn] 6≈ C ′[B1, ..., Bn]. Let P1 =
C[out(](x1)) ·B1, ..., out(](xn)) ·Bn] and P2 = C ′[out(](x1)) ·B1, ..., out(](xn)) ·

36

Bn]. By Lemma 13, P1 6≈ P2. Let A be an adversary such that prob(t, PA1) 6=
prob(t, PA2) for some trace t. By Lemma 9, there exists some M ∈ N such
that P1, P2 are transposable to ∆(P1,A,M), ∆(P2,A,M). By Lemma 8, this
yields ∆(P1,A,M) 6≈ ∆(P2,A,M). Let t′ be a trace and A′ be an adver-
sary such that prob(t′, ∆(P1,A,M)A

′
) 6= prob(t′, ∆(P2,A,M)A

′
). Further, let

ρ1, ρ2 ∈ Exec([[∆(P1,A,M)]]A
′
) be such that tr(ρ1) = tr(ρ2) = t′. If t′ contains an

action with a label from ∼i, then the first such action in ρ1 (resp. ρ2) is an output
of a term of the form]((xπ1

i)bσ1) (resp.]((xπ2
i)bσ2)) where last(ρk) = (Rk, ϕk, σk)

for k ∈ {1, 2}. We will write]1(xi) (resp.]2(xi)) to denote the first (and only)
output of ρ1 (resp. ρ2) with a label from ∼i. Observe that if ρ1 contains actions
with labels from ∼i and ∼j then]1(xi) =E]1(xj) iff]2(xi) =E]2(xj). If this
was not the case, then ρ1 and ρ2 would not have the same trace. Notice that the
above observation also holds when ρ2 ∈ Exec([[∆(P2,A,M)]]A

′
).

Let B0 := νk0 · ... · νkn · (x1 := z1) · ... · (x1 := zn) be a process such
that zi ∈ {k0, ..., kn} and the following hold. If t′ doesn’t contain an action
from ∼i then zi = k0 and otherwise zi = zj iff]1(xi) =]1(xj). By definition,
∆(P1,A,M) and ∆(P2,A,M), both contain a prefix of the form νk′1 · ... · νk′v ·
(yb1 := z1) · ... · (ybv := zv). Furthermore, each prefix has the same length. Let
B′0 = [>] · ... · [>] · B0 such that |B′0| = 2v. We will assume that the actions
of B′0 are labeled sequentially by l1, ..., l2v ∈ Lb. Using the adversary A′ and
the trace t′, we construct an adversary A′′ for C[out(](x1)), ..., out(](xn))]|B′
and C ′[out(](x1)), ..., out(](xn))]|B′ where B′ = B′0 · (B1|...|Bn) as follows. If
t′′ is a prefix of t′ then A′′(t′′) = A′(t′′). Otherwise, A′′ is undefined. By our
construction, we have

prob(t′, (C[out(](x1)), ..., out(](xn))]|B′)A′′)
6=

prob(t′, (C ′[out(](x1)), ..., out(](xn))]|B′)A′′)
which means C[out(](x1)), ..., out(](xn))]|B′ 6≈ C ′[out(](x1)), ..., out(](xn))]|B′.
Applying Lemma 15, we get

C[out(](x1)), ..., out(](xn))] 6≈ C ′[out(](x1)), ..., out(](xn))]

which contradictions condition 5 of Theorem 1. ut
Lemma 19. C ′[B1, ..., Bn] ≈ C ′[B′1, ..., B′n].

Proof. By a similar arguement as the one used in Lemma 18, there exists a
process B0 := νk0 · ... · νkn · (x1 := z1) · ... · (x1 := zn) where zi ∈ {k0, ..., kn} for
all i ∈ {1, ..., n} such that

B0 · (B1|...|Bn) 6≈ B0 · (B′1|...|B′n).

By Lemma 17, we can conclude that

νk · (x1 := k) · · (xn := k) · (B1|...|Bn)
6≈

νk · (x′1 := k) · · (x′n := k) · (B′1|...|B′n)

which contradictions condition 6 of Theorem 1. ut
Theorem 1 is a consequence of Lemma 18 and Lemma 19.

37

D Proof of Theorem 2

Let C be a context and B be a basic process, both over the equational theory
(Fsenc, Esenc) where Fsenc = {senc, sdec, h} and Esenc = {sdec(senc(m, k), k) =
m}. To securely compose C and B, the terms occurring in each protocol must
be tagged by function symbols from disjoint equational theories. The tagging of
two protocols will be done in two steps. To begin, a signature renaming function
d will be applied to each of C and B with distinct values of d ∈ {b, c}. The

function d transforms a context C over the signature (Fsenc, Esenc) to a context
Cd by replacing every occurrence of the function symbols senc, sdec and h in C by
sencd, sdecd and hd, respectively. The resulting context Cd is over the signature
(Fdsenc, Edsenc), for Fdsenc = {sencd, sdecd, hd} and Edsenc = {sdecd(sencd(m, k), k) =
m}. Given Cc and Bb over the disjoint signatures Fcsenc and Fbsenc, the tagging
function d e is then applied to Cc and Bb, generating the the tagged versions of
C and B.

We now give the formal definition of the tagging function d e. Let Fdtag =

{tagd, untagd} and Edtag = {untagd(tagd(x)) = x}. Further, Ftag = Fbtag ∪ Fctag
and Etag = Ebtag ∪ Ectag. The function H : T (Fdsenc,X) → T (Fsenc ∪ Fdtag,X) is
defined below.

H(sencd(u1, u2)) = senc(tagd(H(u1)),H(u2))
H(sdecd(u1, u2)) = untagd(sdec(H(u1),H(u2)))
H(hd(u)) = h(tagd(H(u)))
H(u) = u, if u is a name or variable

The function testsd below maps terms from T (Fenc ∪ Fdtag,X) to a conjunc-
tion of equalities, as defined below.

testsd(senc(u1, u2)) = testsd(u1) ∧ testsd(u2)
testsd(sdec(u1, u2)) = testsd(u1) ∧ testsd(u2)
testsd(h(u)) = testsd(u)
testsd(tagd(u)) = testsd(u)
testsd(untagd(u)) = tagd(untagd(u)) = tagd(u) ∧

testsd(u)
testsd(u) = >, if u is a name or variable

For a term u, observe that testsd(u) = c1 ∧ ... ∧ cn where ci is > or v1 = v2
for ground terms v1, v2 ∈ Fsenc ∪ Ftag. We say that testsd(u) passes if ci is > or
v1 =Esenc∪Etag v2 for all i ∈ {1, ..., n}. Using the preceding notions, we define d e
as follows.

Definition 10. Let Bd be basic process over Fdsenc for d ∈ {b, c}. The basic
process dBde is defined as follows.

38

d�e = �
dνxe = [>] · νx
din(x)e = [>] · in(x)
dout(u)e = [testsd(H(u))] · out(H(u))
d(x := u)e = [testsd(H(u))] · (x := H(u))
d[u = v]e = [testsd(H(u)) ∧ testsd(H(v))]·

[H(u) = H(v)]
dB1 ·B2e = dB1e · dB2e
dB1 +p B2e = [>] · dB1e+p [>] · dB2e

Definition 10 can be lifted naturally to basic contexts by requiring d�e = �
for any process variable �.

Definition 11. Let Cd = a1 · ... ·an · (D1[�1]|...|Dn(�n)) be a context over Fdsenc
for d ∈ {b, c}. The context dCde is da1 · ... · ane · (dD1[�1]e|...|dDn(�n)e).

The following example demonstrates the behavior of processes that are tagged
using our scheme. Whenever a protocol manipulates a term, that term should
be tagged with the identifier of the protocol. To enforce this, every observable
action in a tagged protocol is prefixed with a conjunction of tests. If the terms
manipulated by the atomic action meet the aforementioned requirement, the
tests will pass. Otherwise, the tests will fail, and further protocol actions will
be blocked. In this way, messages from one protocol cannot be confused with
messages from another protocol.

Example 10. Let P = νn ·νm ·out(senc(m,n, k)) and Q = in(x) ·out(sdec(x, k))
where the processes P and Q share a key k. We have dP be = [>] · νn · [>] · νm ·
[>] · out(senc(tagb(m), n, k)) and dQce = [>] · in(x) · [tagc(untagc(sdec(x, k))) =
sdec(x, k)] · out(untagc(sdec(x, k))). If the output of dP be is forwarded to dQce
then the test

tagc(untagc(sdec(senc(tagb(m), n, k), k))
=

sdec(senc(tagb(m), n, k), k)

reduces to tagc(untagc(tagb(m)) = tagb(m) but ultimately blocks because
c 6= b.

For ease of notation, let E = Esenc ∪ Etag. Let d ∈ {b, c} be a symbolic
identifier used for tagging processes. We will write d′ to denote the new identifier
c′ if d = c and b′ if d = b. Using these identifiers, we define new equational
theories for tagged processes as follows. Let

Fd
′

tag = {tagd′ , untagd′}

and

Ed
′

tag = {untagd′(tagd′(x)) = x}.

39

To achieve Theorem 2, we will map an attack on a tagged process over the
equational theory E to an attack on a process over disjoint signatures in the
extended equational theory E0 defined below. Let

F0 = Fbsenc ∪ Fcsenc ∪ Fasenc ∪ Fb
′

tag ∪ Fc
′

tag

and
E0 = Ebsenc ∪ Ecsenc ∪ Easenc ∪ Eb

′

tag ∪ Ec
′

tag.

We now define a function b c : T (Fsenc ∪Ftag,X)→ T (F0,X). This function
is an adaptation of the one from [27].

btagd(u)c = tagd′(buc)
buntagd(u)c = untagd′(buc)
bsenc(u1, u2)c = sencd(untagd′(bu1c), bu2c) if

bu1c =E0 tagd′(untagd′(bu1c))
= senca(bu1c, bu2c) otherwise

bsdec(u1, u2)c = tagd′(sdecd(bu1c, bu2c)) if
bu1c =E0 sencd(sdecd(bu1c, bu2c), bu2c)

= sdeca(bu1c, bu2c) otherwise
bh(u)c = hd(untagd′(buc)) if

buc =E0 tagd′(untagd′(buc))
= ha(buc) otherwise

buc = u for a name or a variable

Let u be a term and
−→
E be an orientation of the equations of E from left to

right. We will write u →E v to denote that u rewrites to v and u →∗E v if u
rewrites to v in 0 or more steps. The normal form of u will be denoted u ↓. A
term u is in head normal form if any sequence of rewrites on u cannot happen
at the root.

Lemma 20. Let u, v ∈ T (Fsenc ∪ Ftag,X). If u→E v then buc =E0 bvc.

Proof. The proof is by induction on the structure of u. For the base case, let u
be a name or variable. If u→E v then u = v and the goal is immediate. For the
induction step, we proceed by cases.

case 1 : u = tagd(u1). By the definition of E, u does not rewrite in the root
symbol. That is, if u →E v then v = tagd(v1) where u1 →E v1. By definition,
buc = tagd′(bu1c) and bvc = tagd′(bv1c). By the I.H. we have bu1c =E0 bv1c and
the case follows.

case 2 : u = untagd(u1). We consider two cases. First assume that u1 =
tagd(u2) and u→E u2. We have the following.

buc = untagd′(bu1c)
= untagd′(tagd′(bu2c))
=E0 bu2c

40

Otherwise u →E v where v = untagd(u
′
1). By the I.H. bu1c =E0 bu′1c and the

result follows.
case 3 : u = senc(u1, u2). By the definition of E, u does not rewrite in the

root symbol. That is, v = senc(v1, v2) where u1 →E v1 and u2 = v2 (or u1 = v2
and u2 →E v2, which follows by a similar argument). By the I.H. bu1c =E0 bv1c.
We consider two subcases.

In the first, bu1c =E0 tagd′(untagd′(bu1c)). Because bu1c =E0 bv1c, we have
bv1c =E0 tagd′(untagd′(bv1c)). By definition, we know buc = sencd(untagd′(bu1c), bu2c)
and bvc = sencd(untagd′(bv1c), bu2c) and thus buc =E0 bvc.

In the second case, bu1c 6=E0 tagd′(untagd′(bu1c)). Because bu1c =E0 bv1c,
we have bv1c 6=E0 tagd′(untagd′(bv1c)). That is, buc = senca(bu1c, bu2c) and
bvc = senca(bv1c, bu2c) and thus buc =E0 bvc.

case 4 : u = sdec(u1, u2). We consider two subcases.
subcase 4.1 : u1 = senc(u3, u2) and u→E u3. First assume that the following

equation holds.
bu3c =E0 tagd′(untagd′(bu3c)) (2)

Because u1 = senc(u3, u2), by the I.H. we have bu1c =E0 bsenc(u3, u2)c =
sencd(untagd′(bu3c), bu2c) where the latter equality follows by equation 2. From
the proceeding facts, we have sencd(sdecd(bu1c, bu2c), bu2c)

=E0 sencd(sdecd(sencd(untagd′(bu3c), bu2c), bu2c), bu2c)
=E0 sencd(untagd′(bu3c), bu2c)
=E0 bu1c

The result is a consequence of the following derivation.

buc = tagd′(sdecd(bu1c, bu2c))
=E0 tagd′(sdecd(sencd(untagd′(bu3c), bu2c), bu2c))
=E0 tagd′(untagd′(bu3c))
=E0 bu3c

Now assume that equation 2 does not hold. Because u1 →E senc(u3, u2), by
the I.H. we have bu1c =E0 bsenc(u3, u2)c = senca(bu3c, bu2c), where the latter
equality follows from the fact that equation 2 does not hold. By the defini-
tion of E0, senca(bu3c, bu2c) does not rewrite in the root symbol and bu1c ↓ =
senca(u′3, u

′
2). We also have sencd(sdecd(bu1c, bu2c), bu2c)) ↓= sencd(sdecd(senca(u′3, u

′
4), u′2).

Notice that bu1c ↓ and sencd(sdecd(bu1c, bu2c), bu2c) have normal forms of dif-
ferent size. Because E0 is a convergent rewrite system, this means that bu1c 6=E0

sencd(sdecd(bu1c, bu2c), bu2c) and thus buc = sdeca(bu1c, bu2c). The case follows
by the derivation below.

buc = sdeca(bu1c, bu2c))
=E0 sdeca(senca(bu3c, bu2c), bu2c))
=E0 bu3c

case 4.2 : u →E v where v = sdec(u′1, u2) and u1 →E u′1. The case when
v = sdec(u1, u

′
2) and u2 →E u′2 follows by a similar argument. By the I.H.

bu1c = bu′1c and the case is straightforward.
case 5 : u = h(u1). Follows by a similar argument as case 2. ut

41

Lemma 21. Let u, v ∈ T (Fsenc∪Ftag,X) be terms in normal form. Then u 6= v
implies buc 6=E0 bvc.

Proof. Define a function b c1 : T (Fsenc ∪Ftag,X)→ T (F0,X) which is identical
to b c on all cases with the exception that bsdec(u1, u2)c1 = sdeca(bu1c1, bu2c1).
Formally,

btagd(u)c1 = tagd′(buc1)
buntagd(u)c1 = untagd′(buc1)
bsenc(u1, u2)c1 = sencd(untagd′(bu1c1), bu2c1) if

bu1c1 =E0 tagd′(untagd′(bu1c1))
= senca(bu1c1, bu2c1) otherwise

bsdec(u1, u2)c1 = sdeca(bu1c1, bu2c1)
bh(u)c1 = hd(untagd′(buc1)) if

buc1 =E0 tagd′(untagd′(buc1))
= ha(buc1) otherwise

buc1 = u for a name or a variable.

We show the following.

(i) buc = buc1 and bvc = bvc1
(ii) buc, bvc are in head normal form
(iii) u 6= v implies buc 6=E0 bvc

by induction on max(|u|, |v|). We can assume without loss of generality that
|v| ≤ |u| and hence need only show items (i) and (ii) hold for the term u.
For the base case, when u is a name or a variable, we have u = buc = buc1
from which items (i) and (ii) are obvious. We also have v = bvc and clearly
buc = u 6=E0 v = bvc. For the induction step, we proceed by a case analysis on
u.

case 1 : u = tagd(u1).
(i) We have buc = tagd′(bu1c) and buc1 = tagd′(bu1c1). By the I.H. bu1c =E0

bu1c1 and thus buc =E0 buc1.
(ii) By definition buc = tagd′(bu1c) and clearly buc is in head normal form.
(iii) We again do a case analysis on v. Assume buc =E buc. By items (i)

and (ii), the only interesting cases are when v = tagd(v1) or v = sdec(v1, v2).
When v = tagd(v1), it must be the case that u1 6= v1 because u 6= v. We have
buc = tagd′(bu1c) and bvc = tagd′(bv1c). By the I.H. bu1c 6=E0 bv1c and it
follows that buc 6=E0 bvc.

When v = sdec(v1, v2), by item (i) we have bvc = bvc1 and thus bvc =
sdeca(bv1c, bv2c). That is, buc ↓= tagd′(u

′
1) and bvc ↓= sdeca(v′1, v

′
2) and clearly

buc 6=E0 bvc.
case 2 : u = untagd(u1).
(i) We have buc = untagd′(bu1c) and buc1 = untagd′(bu1c1). By the I.H.

bu1c =E0 bu1c1 and thus buc =E0 buc1.

42

(ii) We again do a case analysis of u1. First note that u1 6= tagd(u2) for any
u2. Otherwise we would have u = untagd(tagd(u2))→E u2, contradicting the fact
that u is in normal form. Now consider the case when u1 = sdec(u2, u3). By the
I.H. bu1c = bu1c1 = sdeca(bu2c, bu3c). Then we have buc = untagd′(sdeca(bu2c, bu3c))
which clearly does not rewrite in the root symbol. The remaining cases are
straightforward.

(iii) By item (ii), buc = untagd′(bu1c) is in head normal form. We do a case
analysis of v, with the only interesting case being when v = untagd(v1). Again by
item (ii), we have bvc = untagd′(bv1c) is in head normal form. It then suffices to
show bu1c 6=E0 bv1c. Because u 6= v, u1 6= v1 and the I.H. yields bu1c 6=E0 bv1c.

case 3 : u = senc(u1, u2).

(i) By the I.H. bu1c = bu1c1 and bu2c = bu2c1. From this we have bu1c =E0

tagd′(untagd′(bu1c)) iff bu1c1 =E0 tagd′(untagd′(bu1c1)) and it follows that buc =
buc1.

(ii) By definition, buc = sence(u
′
3, u
′
4) for some terms u′3, u

′
4 and e ∈ {a, b, c}.

Clearly, sence(u
′
3, u
′
4) is in head normal form.

(iii) We do a case analysis on v. By item (ii), the only interesting case is
when v = senc(v1, v2). In this case u1 6= v1 or u2 6= v2. By the I.H. bu1c 6=E0

bv1c or bu2c 6=E0 bv2c. Clearly if buc = sencd(untagd′(bu1), bu2c) and bvc =
senca(bv1c, bv2c) (or vice-versa) then buc 6=E0 bvc. If buc = senca(bu1c, bu2c)
and bvc = senca(bv1c, bv2c) then the result follows from the fact that buc, bvc
are in head normal form and bu1c 6=E0 bv1c or bu2c 6=E0 bv2c. When buc =
sencd(untagd′(bu1c), bu2c) and bvc = sencd(untagd′(bv1c), bv2c) the result follows
by a similar argument.

case 4 : u = sdec(u1, u2).

(i) We do a case analysis on u1. By the I.H. bu1c is in head normal form
and thus the only interesting case is when u1 = senc(u3, u4). Assume for a con-
tradiction that bu1c =E0 sencd(sdecd(bu1c, bu2c), bu2c). By definition, bu1c =
sencd(u

′
3, bu4c) for some term u′3. In particular, this means that bu4c =E0 bu2c.

By the I.H. (contrapositive of item (iii)) u2 = u4. Then we have u = sdec(senc(u3, u2), u2)→
u3, which contradicts the fact that u is in normal form. That is, bu1c 6=E0

sencd(sdecd(bu1c, bu2c), bu2c) and buc = sdeca(bu1c, bu2c). By the I.H. bu1c =
bu1c1 and bu2c = bu2c1 from which it follows that buc = buc1.

(ii) By item (i), buc = buc1 and we have buc = sdeca(bu1c, bu2c). Notice
that if buc is not in head normal form then bu1c =E0 senca(bu3c, bu2c) for
some u3. By the definition of b c and the fact that bu1c is in head normal
form (by the I.H.), it must be the case that u1 = senc(u3, u4). Because u is
in normal form, u1 6= senc(u3, u2) for any u3. Otherwise we would have u =
sdec(senc(u3, u2), u2)→E u3. That is, bu1c 6=E0 senca(bu3c, bu2c) for any u3 and
the result follows.

(iii) By items (i) and (ii), buc = buc1 = sdeca(bu1c, bu2c) is in head nor-
mal form. We do a case analysis on v, with the only interesting case being
when v = sdec(v1, v2). Then again by items (i) and (ii), we have bvc = bvc1 =
sdeca(bv1c, bv2c) is in head normal form. Because u 6= v and either u1 6= v1 or

43

u2 6= v2. By the I.H. either bu1c 6=E0 bv1c or bu2c 6=E0 bv2c from which the
result follows.

case 5 : u = h(u1).
(i) By the I.H. bu1c = bu1c1. From this we have bu1c =E0 tagd′(untagd′(bu1c))

iff bu1c1 =E0 tagd′(untagd′(bu1c1)) and it follows that buc = buc1.
(ii) By definition, buc = hd(untagd′(bu1c)) or buc = hd(bu1c). Clearly, both

hd(untagd′(bu1c)) and hd(bu1c) are in head normal form.
(iii) We do a case analysis on v. By item (ii), the only interesting case is

when v = h(v1). Because u 6= v, it must be the case that u1 6= v1 and by
the I.H. we have bu1c 6=E0 bv1c. Clearly if buc = hd(untagd′(bu1c)) and bvc =
ha(bu1c) (or vice-versa) then buc 6=E0 bvc. If buc = hd(untagd′(bu1c)) and bvc =
hd(untagd′(bv1c)) or buc = ha(bu1c) and bvc = ha(bv1c) then the result follows
from the fact that bu1c 6=E0 bv1c. ut

Lemma 22. Let u, v ∈ T (Fsenc ∪ Ftag,X). We have u =E v iff buc =E0 bvc.

Proof. The proof follows from Lemma 20 and Lemma 21. ut

Let ϕ be a frame and σ be a substitution over T (Fsenc ∪Ftag). Define bϕc =
{bwϕc | w ∈ dom(ϕ)} and bσc = {bxσc | x ∈ dom(σ)}. Further define a function
♦ϕ : T (Fsenc ∪Ftag,Xw)→ T (F0,Xw) as follows. This function is an adaptation
of the one from [27].

♦ϕ(tagd(r)) = tagd′(♦ϕ(r))
♦ϕ(untagd(r)) = untagd′(♦ϕ(r))
♦ϕ(senc(r1, r2)) = sencd(untagd′(♦ϕ(r1)),♦ϕ(r2)) if

♦ϕ(r1)bϕc =E0

tagd′(untagd′(♦ϕ(r1)))bϕc
= senca(♦ϕ(r1),♦ϕ(r2)) otherwise

♦ϕ(sdec(r1, r2)) = tagd′(sdecd(♦ϕ(r1),♦ϕ(r2))) if
♦ϕ(r1)bϕc =E0

sencd(sdec(♦ϕ(r1),♦ϕ(r2)),♦ϕ(r2))bϕc
= sdeca(♦ϕ(r1),♦ϕ(r2))

♦ϕ(h(r)) = hd(untagd′(♦ϕ(r))) if
♦ϕ(r)bϕc =E0

tagd′(untagd′(♦ϕ(r))bϕc
= ha(♦ϕ(r)) otherwise

♦ϕ(w) = w for w ∈ dom(ϕ)

Lemma 23. Let ϕ be a frame over T (Fsenc ∪Ftag) and r ∈ T (Fsenc ∪Ftag,Xw).
Then brϕc =E0 ♦ϕ(r)bϕc.

Proof. The proof is by induction on the structure of r. For the base case, when
r is a frame variable w, we have ♦ϕ(w)bϕc = wbϕc = bwϕc. For the induction
step, we proceed by cases.

44

case 1 : r = tagd(r1). We have btagd(r1)ϕc = tagd′(br1ϕc) and ♦ϕ(tagd(r1))bϕc =
tagd′(♦ϕ(r1)bϕc). By the I.H. br1ϕc =E0 ♦ϕ(r1)bϕc and the case follows.

case 2 : r = h(r1). If ♦ϕ(h(r1)) = hd(untagd′(♦ϕ(r1))) then ♦ϕ(r1)bϕc =E0

tagd′(untagd′(♦ϕ(r1)))bϕc. By the I.H. ♦ϕ(r1)bϕc =E0 br1ϕc and we have br1ϕc =E0

tagd′(untagd′(br1ϕc)). By definition, this means that bh(r1)ϕc = hd(untagd′(br1ϕc))
and we have the following.

bh(r1)ϕc = hd(untagd′(br1ϕc))
=E0 hd(untagd′(♦ϕ(r1)bϕc))
= ♦ϕ(h(r1))bϕc

If ♦ϕ(h(r1)) = ha(♦ϕ(r1)) then we can show by a similar argument that bh(r1)ϕc =
ha(br1ϕc) and the case again follows by the I.H.

The remaining cases are similar. ut

Lemma 24. Let ϕ1, ϕ2 be frames over T (Fsenc ∪ Ftag). If bϕ1c ≡E0 bϕ2c then
ϕ1 ≡E ϕ2.

Proof. We show the contrapositive. Assume ϕ1 6≡E ϕ2. By definition, there exist
recipes r and r′ such that rϕ1 6=E r′ϕ1 and rϕ2 =E r′ϕ2 (or vice-versa). We
show

♦ϕ1(r)bϕ1c 6=E ♦ϕ1(r′)bϕ1c

and
♦ϕ1

(r)bϕ2c =E ♦ϕ1
(r′)bϕ2c.

By Lemma 22, if rϕ1 6=E r′ϕ1 then brϕ1c 6=E0cr′ϕ1c. Using Lemma 23, we have
♦ϕ(r)bϕ1c 6=E0 ♦ϕ(r′)bϕ1c. By a similar argument, we can derive ♦ϕ1

(r)bϕ2c =E

♦ϕ1(r′)bϕ2c and hence bϕ1c 6≡E0 bϕ2c. ut

Lemma 25. Let ϕ,ϕ′ be frames over T (Fsenc ∪ Ftag) such that bϕc ≡E0 bϕ′c.
Then ♦ϕ(r) = ♦ϕ′(r).

Proof. The proof is by induction on the structure of r. For the base case, when
r is an frame variable w, we have ♦ϕ(w) = ♦ϕ′(w) = w. For the induction step,
we proceed by cases.

case 1 : r = tagd(r1). By definition, ♦ϕ(r) = tagd′(♦ϕ(r1)) and ♦ϕ′(r) =
tagd′(♦ϕ′(r1)). From the I.H. ♦ϕ(r1) = ♦ϕ′(r1) and it follows that ♦ϕ(r) =
♦ϕ′(r).

case 2 : r = h(r1). By the I.H. we can define r′1 = ♦ϕ(r1) = ♦ϕ′(r1) and
r′2 = tagd′(untagd′(♦ϕ(r1))) = tagd′(untagd′(♦ϕ′(r1))). Because bϕc ≡E0 bϕ′c,
we have r′1bϕc =E0 r′2bϕc iff r′1bϕ′c =E0 r′2bϕ′c. This means that if ♦ϕ(h(r1)) =
hd(untagd′(♦ϕ(r1))) then ♦ϕ′(h(r1)) = hd(untagd′(♦ϕ′(r1))) and if ♦ϕ(h(r1)) =
ha(♦ϕ(r1)) then ♦ϕ′(h(r1)) = ha(♦ϕ′(r1)). In either case, the result follows by
the I.H.

The remaining cases are similar. ut

Proposition 3. Let u ∈ T (Fdsenc,X) and u1 ∈ st(u). If testsd(H(u)σ) passes
then testsd(H(u1)σ) passes.

45

Lemma 26. Let u ∈ T (Fdsenc,X) and σ be a substitution over Fdsenc. If testsd(H(u)σ)
passes then bH(u)σc =E0 ubσc.

Proof. The proof is by induction on the structure of u. For the base case, when
u is a name or variable we have bH(u)σc = buσc = ubσc. For the induction step,
we do a case analysis. By Proposition 3, we can apply the I.H. on any subterm
of u.

case 1 : u = hd(u1). By definition, H(u) = h(tagd(H(u1))) and bH(u)σc =
bh(tagd(H(u1)σ))c. Let v = tagd(H(u1)σ). We have

tagd′(untagd′(bvc)) = tagd′(untagd′(btagd(H(u1)σ)c))
= tagd′(untagd′(tagd′(bH(u1)σc)))
=E0 tagd′(bH(u1)σc)
= bvc.

The result is a consequence of the following derivation.

bH(u)σc = bh(tagd(H(u1)σ))c
= hd(untagd′(tagd′(bH(u1)σc)))
=E0 hd(bH(u1)σc)
=E0 hd(u1bσc) (I.H.)
= hd(u1)bσc

case 2 : u = sencd(u1, u2). By definition, H(u) = senc(tagd(H(u1)),H(u2))
and bH(u)σc = bsenc(tagd(H(u1)σ),H(u2)σ)c. Let v = tagd(H(u1)σ). Identi-
cally to case 1, we can show that tagd′(untagd′(bvc)) = bvc. The result is a
consequence of the following derivation.

bH(u)σc = bsenc(tagd(H(u1)σ),H(u2)σ)c
= sencd(untagd′(btagd(H(u1)σ)c), bH(u2)σc)
= sencd(untagd′(tagd′(bH(u1)σc)), bH(u2)σc)
=E0 sencd(bH(u1)σc, bH(u2)σc)
=E0 sencd(u1bσc, u2bσc) (I.H.)
= sencd(u1, u2)bσc

case 3 : u = sdecd(u1, u2). By definitionH(u)σ = untagd(sdec(H(u1)σ,H(u2)σ)).
Because testsd(H(u)σ) passes, it must be the case that

tagd(untagd(sdec(H(u1)σ,H(u2)σ))) =E0 sdec(H(u1)σ,H(u2)σ).

The preceding equality only holds when

H(u1)σ =E0 senc(tagd(v),H(u2)σ) (3)

for some term v. Therefore, by the definition of b c, we have

bH(u1)σc =E0 sencd(untagd′(tagd′(v)), bH(u2)σc)
=E0 sencd(bvσc, bH(u2)σc)

from which it follows that sencd(sdecd(bH(u1)σc, bH(u2)σc), bH(u2)σc)

46

=E0 sencd(sdecd(sencd(v, bH(u2)σc), bH(u2)σc), bH(u2)σc)
=E0 sencd(bvσc, bH(u2)σc)
=E0 bH(u1)σc

The result is consequence of the following.

bH(u)σc = buntagd(sdec(H(u1)σ,H(u2)σ))c
= untagd′(tagd′(sdecd(bH(u1)σc, bH(u2)σc)))
=E0 sdecd(bH(u1)σc, bH(u2)σc)
=E0 sdecd(u1bσc, u2bσc) (I.H.)
= sdecd(u1, u2)bσc

ut

Define a function Θ on traces inductively as follows. If |t| = 0 then Θ(t) = t.

Otherwise t = t′
(§,[l])−−−→ obs(P,ϕ, σ). Define

Θ(t) = Θ(t′)
τ,[l]−−→ last(Θ(t′))

(♦ϕ(§),[l])−−−−−−→ obs(P ′, ϕ′, σ′)

where ♦ϕ(τ) = τ if § = τ and otherwise ♦ϕ(r) if § is a recipe r. Let P be a
process over Fbsenc ∪ Fcsenc. Define a function ♦P : A → A as follows. If A is not
an adversary for dP e then ♦P (A) is undefined. Otherwise

♦P (A)(t) =

{
A(Θ(t)) if Θ(t) ∈ Trace([[dP eA]])
undefined otherwise

For substitutions σ, σ′ and an equational theory E, we write σ ∼=E σ′ if
dom(σ) = dom(σ′) and xσ =E xσ′ for all x ∈ dom(σ).

Lemma 27. Let P,Q be linear processes over Fsenc and W be an arbitrary in-
terleaving of P b and Qc. If

t = obs(dW e, ∅, ∅) (τ,[l1])−−−−→ α1−→ ...
(τ,[lk])−−−−→ αk−−→ obs(dWke, ϕk, σk)

is a trace of [[dW eA]] then

t′ = obs(W, ∅, ∅) α′1−→ ...
α′k−−→ obs(W ′k, ϕ

′
k, σ
′
k)

is a trace of [[W♦W (A)]] such that ϕ′k ≡E0 bϕkc and σ′k ≡E0 bσkc.

Proof. The proof is by induction on k. The base case, k = 0, is trivial. For the in-

duction step, let t′ = t′′
α′k−−→ obs(W ′, ϕ′k, σ

′
k) where last(t′′) = obs(W ′′, ϕ′k−1, σ

′
k−1).

By the I.H. t′′ is a trace of [[W♦W (A)]] such that ϕ′k−1 ≡E0 bϕk−1c and σ′k−1 ≡E0

bσk−1c. We proceed by cases.
case 1 : α2k is an input action of the form in(x). By definition, α′k is also

an input action of the form in(x) and clearly t′ is a trace of [[W♦(A)]]. We have
ϕk = ϕk−1 and ϕ′k = ϕ′k−1 and therefore ϕ′k = ϕ′k−1 ≡E0

bϕk−1c = bϕkc. By
definition σk = σk−1 ∪ {x 7→ rϕk−1} and σ′k = σ′k−1 ∪ {x 7→ ♦ϕk−1

(r)ϕ′k−1}.
By the I.H. it suffices to show xσ′k =E0 bxσkc, which is a consequence of the
derivation below.

47

bxσkc =E0 brϕk−1c (Lemma 22)
=E0 ♦ϕk−1

(r)bϕk−1c (Lemma 23)
=E0 ♦ϕk−1

(r)ϕ′k−1 (I.H.)
= xσ′k

case 2 : α2k corresponds to executing an assignment of the form x := H(u)
for some u ∈ T (Fdsenc,X). By definition α′k is also an assignment of the form

x := u and clearly t′ is a trace of [[W♦(A)]]. Because t is a trace of [[dW eA]],
it must be the case that testsd(H(u)) passes. We also have ϕk = ϕk−1 and
ϕ′k = ϕ′k−1 and therefore ϕ′k = ϕ′k−1 ≡E0 bϕk−1c = bϕkc. By definition σk =
σk−1 ∪ {x 7→ H(u)σk−1} and σ′k = σ′k−1 ∪ {x 7→ uσ′k−1}. By the I.H. it suffices
to show xσ′k =E0

bxσkc, which is a consequence of the derivation below.

bxσkc =E0 bH(u)σk−1c (Lemma 22)
=E0 ubσk−1c (Lemma 26)
=E0 uσ′k−1 (I.H.)
=E0 xσ′k

case 3 : α2k corresponds to executing a test of the form [H(u1) = H(u2)]
where u1, u2 ∈ T (Fdsenc,X). By definition α′k is also a test of the form [u1 = u2].

Because t is a trace of [[dW eA]], it must be the case that testsd(H(u1)) and
testsd(H(u1)) both pass. We also have ϕk = ϕk−1 and ϕ′k = ϕ′k−1 and therefore
ϕ′k = ϕ′k−1 ≡E0 bϕk−1c = bϕkc. We can similarly conclude that σ′k ≡E0 bσkc. We
know that H(u1)σk =E H(u2)σk, from which we have the following derivation.

bH(u1)σkc =E0 bH(u2)σkc (Lemma 22)
u1bσkc =E0 u2bσkc (Lemma 26)
u1σ

′
k =E0 u2σ

′
k

That is, t′ is a trace of [[W♦W (A)]]
case 4 : α2k is an output of the form out(H(u)) where u ∈ T (Fdsenc,X).

By definition α′k is also an output of the form out(u). Because t is a trace of

[[dW eA]], it must be the case that testsd(H(u)) passes. We also have σk = σk−1
and σ′k = σ′k−1 and therefore σ′k = σ′k−1 ≡E0 bσk−1c = bσkc. By definition
ϕk = ϕk−1∪{w 7→ H(u)σk} and ϕ′k = ϕ′k−1∪{w 7→ uσ′k}. By the I.H. it suffices
to show wϕ′k =E0

bwϕkc, which is a consequence of the derivation below.

bwϕkc =E0 bH(u)σkc (Lemma 22)
=E0 ubσkc (Lemma 26)
=E0 uσ′k
= wϕ′k

case 5 : α2k corresponds to a new name creation of the form νn. This case is
straightforward from the fact that α′k is also a new name creation of the form
νn and bnc = n.

Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|...|Dn[�n]) (resp. C ′[�1, ...,�n] =
νk′1 · ... · νk′m · (D′1[�1]|...|D′n[�n])) be a context over Fsenc with labels from Lc.

48

Further let B1, ..., Bn (resp. B′1, ..., B
′
n) be basic processes over Fsenc with labels

from Lb. We will write ‡ when the conditions of Theorem 2 hold for the preceding
processes. The following is a consequence of Lemmas 24, 25 and 27.

Proposition 4. Assuming ‡, then

(dCc[Bb1, ..., Bbn]e, d(C ′)c[(B′1)b, ..., (B′n)b]e)

is transposable to

(Cc[Bb1, ..., B
b
n], (C ′)c[(B′1)b, ..., (B′n)b]).

