776 research outputs found

    Integrated problem-based learning in the neuroscience curriculum – the SUNY Downstate experience

    Get PDF
    BACKGROUND: This paper reports the author's initial experience as Block Director in converting a Conventional Curriculum into a problem-based learning model (PBL) for teaching Psychopathology. As part of a wide initiative in curriculum reform, Psychopathology, which was a six-week course in the second-year medical school curriculum, became integrated into a combined Neuroscience block. The study compares curriculum conversion at State University of New York (SUNY), Downstate, with the experiences at other medical centres that have instituted similar curricula reform. METHODS: Student satisfaction with the Conventional and PBL components of the Neuroscience curriculum was compared using questionnaires and formal discussions between faculty and a body of elected students. The PBL experience in Psychopathology was also compared with that of the rest of the Neuroscience Block, which used large student groups and expert facilitators, while the Psychopathology track was limited to small groups using mentors differing widely in levels of expertise. RESULTS: Students appeared to indicate a preference toward conventional lectures and large PBL groups using expert facilitators in contrast to small group mentors who were not experts. Small PBL groups with expert mentors in the Psychopathology track were also rated favorably. CONCLUSION: The study reviews the advantages and pitfalls of the PBL system when applied to a Neuroscience curriculum on early career development. At SUNY, conversion from a Conventional model to a PBL model diverged from that proposed by Howard S. Barrows where student groups define the learning objectives and problem-solving strategies. In our model, the learning objectives were faculty-driven. The critical issue for the students appeared to be the level of faculty expertise rather than group size. Expert mentors were rated more favorably by students in fulfilling the philosophical objectives of PBL. The author, by citing the experience at other major Medical Faculties, makes a cautious attempt to address the challenges involved in the conversion of a Psychopathology curriculum into a PBL dominated format

    Demographic uncertainty and disease risk influence climate-informed management of an alpine species

    Get PDF
    Climate change is expected to disproportionately affect species occupying ecosystems with relatively hard boundaries, such as alpine ecosystems. Wildlife managers must identify actions to conserve and manage alpine species into the future, while considering other issues and uncertainties. Climate change and respiratory pathogens associated with widespread pneumonia epidemics in bighorn sheep (Ovis canadensis) may negatively affect mountain goat (Oreamnos americanus) populations. Mountain goat demographic and population data are challenging to collect and sparsely available, making population management decisions difficult. We developed predictive models incorporating these uncertainties and analyzed results within a structured decision making framework to make management recommendations and identify priority information needs in Montana, USA. We built resource selection models to forecast occupied mountain goat habitat and account for uncertainty in effects of climate change, and a Leslie matrix projection model to predict population trends while accounting for uncertainty in population demographics and dynamics. We predicted disease risks while accounting for uncertainty about presence of pneumonia pathogens and risk tolerance for mixing populations during translocations. Our analysis predicted that new introductions would produce more area occupied by mountain goats at mid-century, regardless of the effects of climate change. Population augmentations, carnivore management, and harvest management may improve population trends, although this was associated with considerable uncertainty. Tolerance for risk of disease transmission affected optimal management choices because translocations are expected to increase disease risks for mountain goats and sympatric bighorn sheep. Expected value of information analyses revealed that reducing uncertainty related to population dynamics would affect the optimal choice among management strategies to improve mountain goat trends. Reducing uncertainty related to the presence of pneumonia-associated pathogens and consequences of mixing microbial communities should reduce disease risks if translocations are included in future management strategies. We recommend managers determine tolerance for disease risks associated with translocations that they and constituents are willing to accept. From this, an adaptive management program can be constructed wherein a portfolio of management actions are chosen based on risk tolerance in each population range, combined with the amount that uncertainty is reduced when paired with monitoring, to ultimately improve achievement of fundamental objectives

    Treatment of gram-positive deep sternal wound infections in cardiac surgery -experiences with daptomycin-

    Get PDF
    The reported incidence of deep sternal wound infection (DSWI) after cardiac surgery is 0.4-5% with Staphylococcus aureus being the most common pathogen isolated from infected wound sternotomies and bacteraemic blood cultures. This infection is associated with a higher morbidity and mortality than other known aetiologies. Little is reported about the optimal antibiotic management. The aim of the study is to quantify the application of daptomycin treatment of DSWI due to gram-positive organisms post cardiac surgery

    Burnout and psychiatric morbidity among medical students entering clinical training: a three year prospective questionnaire and interview-based study

    Get PDF
    BACKGROUND: Mental distress among medical students is often reported. Burnout has not been studied frequently and studies using interviewer-rated diagnoses as outcomes are rarely employed. The objective of this prospective study of medical students was to examine clinically significant psychiatric morbidity and burnout at 3(rd )year of medical school, considering personality and study conditions measured at 1(st )year. METHODS: Questionnaires were sent to 127 first year medical students who were then followed-up at 3(rd )year of medical school. Eighty-one of 3(rd )year respondents participated in a diagnostic interview. Personality (HP5-i) and Performance-based self-esteem (PBSE-scale) were assessed at first year, Study conditions (HESI), Burnout (OLBI), Depression (MDI) at 1(st )and 3(rd )years. Diagnostic interviews (MINI) were used at 3(rd )year to assess psychiatric morbidity. High and low burnout at 3(rd )year was defined by cluster analysis. Logistic regressions were used to identify predictors of high burnout and psychiatric morbidity, controlling for gender. RESULTS: 98 (77%) responded on both occasions, 80 (63%) of these were interviewed. High burnout was predicted by Impulsivity trait, Depressive symptoms at 1(st )year and Financial concerns at 1(st )year. When controlling for 3(rd )year study conditions, Impulsivity and concurrent Workload remained. Of the interviewed sample 21 (27%) had a psychiatric diagnosis, 6 of whom had sought help. Unadjusted analyses showed that psychiatric morbidity was predicted by high Performance-based self-esteem, Disengagement and Depression at 1(st )year, only the later remained significant in the adjusted analysis. CONCLUSION: Psychiatric morbidity is common in medical students but few seek help. Burnout has individual as well as environmental explanations and to avoid it, organisational as well as individual interventions may be needed. Early signs of depressive symptoms in medical students may be important to address. Students should be encouraged to seek help and adequate facilities should be available

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Pulmonary Abnormalities in Mice with Paracoccidioidomycosis: A Sequential Study Comparing High Resolution Computed Tomography and Pathologic Findings

    Get PDF
    Paracoccidioidomycosis (PCM) is a fungal infection caused by the dimorphic fungus Paracoccidioides brasiliensis. It occurs preferentially in rural workers in whom the disease is severe and may cause incapacitating pulmonary sequelae. Assessment of disease progression and treatment outcome normally includes chest x-rays or CT studies. Existing experimental PCM models have focused on several aspects, but none has done a radiologic or image follow-up evaluation of pulmonary lesions considered as the fungus primary target. In this study, the lungs of mice infected with fungal conidia were studied sequentially during the chronic stage of their experimental mycosis by noninvasive high resolution medical computed tomography, and at time of sacrifice, also by histopathology to characterize pulmonary abnormalities. Three basic lung lesion patterns were revealed by both techniques: nodular-diffuse, confluent and pseudo-tumoral which were located mainly around the hilus thus accurately reflecting the situation in human patients. The experimental design of this study decreases the need to sacrifice a large number of animals, and serves to monitor treatment efficacy by means of a more rational approach to the study of human pulmonary diseases. The findings we are reporting open new avenues for experimental research, increase our understanding of the mycosis pathogenesis and consequently have repercussions in patients' care

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter
    corecore