30 research outputs found

    Extreme differences in 87Sr/86Sr between Samoan lavas and the magmatic olivines they host: Evidence for highly heterogeneous 87Sr/86Sr in the magmatic plumbing system sourcing a single lava

    Get PDF
    .Investigations of mantle heterogeneity in ocean island basalts (OIB) frequently compare heavy radiogenic isotopes (i.e. 87Sr/86Sr), often measured in whole rock powders, with 3He/4He and δ18O, commonly measured in olivines. However, the 87Sr/86Sr in the olivines, which is dominated by Sr in melt inclusions, may not be in equilibrium with the 87Sr/86Sr in the whole rock. Here we present new 87Sr/86Sr measurements made on Samoan magmatic olivines, where multiple olivine crystals are aggregated for a single isotopic measurement. The olivines host abundant melt inclusions, and yielded relatively large quantities of Sr (13.0 to 100.6 ng) in 19 to 185 mg aliquots of fresh olivine, yielding high Srsample/Srblank ratios (≥ 427). These new data on olivines show that samples can exhibit significant 87Sr/86Sr disequilibrium: in one extreme sample, where the basaltic whole rock 87Sr/86Sr (0.708901) is higher than several different aliquots of aggregate magmatic olivines (0.707385 to 0.707773), the whole rock-olivine 87Sr/86Sr disequilibrium is > 1590 ppm. The 87Sr/86Sr disequilibrium observed between whole rocks and bulk olivines relates to the isotopic disequilibrium between whole rocks and the average 87Sr/86Sr of the population of melt inclusions hosted in the olivines. Therefore, a population of olivines in a Samoan lava must have crystallized from (and trapped melts of) a different 87Sr/86Sr composition than the final erupted lava hosting the olivines. A primary question is how melts with different 87Sr/86Sr can exist in the same magmatic plumbing system and contribute heterogeneous 87Sr/86Sr to a lava and the magmatic olivines it hosts. We explore potential mechanisms for generating heterogeneous melts in magma chambers. The reliance, in part, of chemical geodynamic models of the relationships between isotopic systems measured in whole rocks (87Sr/86Sr) and systems measured in olivines (3He/4He and δ18O) means that whole rock-olivine Sr-isotopic disequilibrium will be important for evaluating relationship among these key isotopic tracer systems. Moving forward, it will be important to evaluate whether whole rock-olivine Sr-isotopic disequilibrium is a pervasive issue in OIB globally

    Measuring Doubly 13C-Substituted Ethane by Mass Spectrometry

    No full text
    Ethane (C2H6) is present in non-negligible amounts in most natural gas reservoirs and is used to produce ethylene for petrochemical industries. It is one of the by-products of lipid metabolism and is the arguably simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on the relative abundances of 13C2H6 in natural gases: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that under thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will dominate in natural samples. Here, we focus on an analytical techniques that will provide the avenue for exploring these phenomena. The method is based on high-resolution gas source isotope ratio mass spectrometry, using the Thermo 253-Ultra (a new prototype mass spectrometer). This instrument achieves the mass resolution (M/Δ M) up to 27,000, permitting separation of the isobaric interferences of potential contaminants and isotopologues of an analtye or its fragments which share a cardinal mass. We present techniques to analyze several isotopologues of molecular and fragment ions of C2H6. The critical isobaric separations for our purposes include: discrimination of 13C2H6 from 13C12CDH5 at mass 32 and separation of the 13CH3 fragment from 12CH4 at mass 16, both requiring at least a mass resolution of 20000 to make an adequate measurement. Other obvious interferences are either cleanly separated (e.g., O2, O) or accounted for by peak-stripping (CH3OH on mass 32 and NH2 on mass 16). We focus on a set of measurements which constrain: the doubly-substituted isotopologue, 13C2H6, and the 13CH3/12CH3 ratio of the methyl fragment, which constrains the bulk δ 13C. Similar methods can be used to measure the D/H ratio, among other species. The precision on the δ 13C is better than 0.25 permil (1 s.e.) on the CH3 fragment. Calculating δ 13C and δ D simultaneously on the intact isotopologues on masses 30 to 32 yields precisions of respectfully 0.2 and 4 permil (1 s.e.). Ratios of mass 32 to mass 30 species are measured to better than +/-0.7 per mil (1 s.e.). The corresponding precision on Δ 13C2H6 (defined as 1000 * ((13C2H6/C2H6)measured/(13C2H6/C2H6)stochastic)-1)) is +/-0.85 per mil (1 s.e.). All precision reflects counting statistics and can be improved with longer counting times. Accuracy determinations are underway

    Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    Get PDF
    Sources of methane to sedimentary environments are commonly identified and quantified using the stable isotopic compositions of methane. The methane “clumped-isotope geothermometer”, based on the measurement of multiply substituted methane isotopologues (13CH3D and 12CH2D2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic–thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (∼50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results
    corecore