141 research outputs found

    Reimagine the ICU: Healthcare Professionals’ Perspectives on How Environments (Can) Promote Patient Well-Being

    Get PDF
    Objective: This study aims (1) to understand the needs and challenges of the current intensive care unit (ICU) environments in supporting patient well-being from the perspective of healthcare professionals (HCPs) and (2) to explore the new potential of ICU environments enabled by technology.Background: Evidence-based design has yielded how the design of environments can advocate for patient well-being, and digital technology offers new possibilities for indoor environments. However, the role of technology in facilitating ICU patient well-being has been unexplored.Method: This study was conducted in two phases. First, a mixed-method study was conducted with ICU HCPs from four Dutch hospitals. The study investigated the current environmental support for care activities, as well as the factors that positively and negatively contribute to patient experience. Next, a co-creation session was held involving HCPs and health technology experts to explore opportunities for technology to support ICU patient well-being.Results: The mixed-method study revealed nine negative and eight positive patient experience factors. HCPs perceived patient emotional care as most challenging due to the ICU workload and a lack of environmental support in fulfilling patient emotional needs. The co-creation session yielded nine technology-enabled solutions to address identified challenges. Finally, drawing from insights from both studies, four strategies were introduced that guide toward creating technology to provide holistic and personalized care for patients.Conclusion: Patient experience factors are intertwined, necessitating a multifactorial approach to support patient well-being. Viewing the ICU environment as a holistic unit, our findings provide guidance on creating healing environments using technology

    RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla

    Get PDF
    Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance

    Dynamics of multipartite quantum correlations under decoherence

    Full text link
    Quantum discord is an optimal resource for the quantification of classical and non-classical correlations as compared to other related measures. Geometric measure of quantum discord is another measure of quantum correlations. Recently, the geometric quantum discord for multipartite states has been introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have investigated global quantum discord (QD) and geometric quantum discord (GQD) under the influence of external environments for different multipartite states. Werner-GHZ type three-qubit and six-qubit states are considered in inertial and non-inertial settings. The dynamics of QD and GQD is investigated under amplitude damping, phase damping, depolarizing and flipping channels. It is seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ states and for p>0.5 for six qubit GHZ states. This implies that multipartite states are more fragile to decoherence for higher values of N. Surprisingly, a rapid sudden death of discord occurs in case of phase flip channel. However, for bit flip channel, no sudden death happens for the six-qubit states. On the other hand, depolarizing channel heavily influences the QD and GQD as compared to the amplitude damping channel. It means that the depolarizing channel has the most destructive influence on the discords for multipartite states. From the perspective of accelerated observers, it is seen that effect of environment on QD and GQD is much stronger than that of the acceleration of non-inertial frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore, QD exhibits more robustness than GQD when the multipartite systems are exposed to environment.Comment: 15 pages, 4 figures, 4 table

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The yield of charged particles associated with high-pTp_{\rm T} trigger particles (8<pT<158 < p_{\rm T} < 15 GeV/cc) is measured with the ALICE detector in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta pT>3p_{\rm T}> 3 GeV/cc on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/350
    corecore