54 research outputs found

    An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage

    Full text link
    A model is proposed to assess mechanical behaviour of tissue engineering scaffolds and predict their performance in vivo during tissue regeneration. To simulate the growth of tissue inside the pores of the scaffold, the scaffold is swollen with a Poly (Vinyl alcohol) solution and subjected to repeated freezing and thawing cycles. In this way the Poly (Vinyl alcohol) becomes a gel whose stiffness increases with the number of freezing and thawing cycles. Mechanical properties of the construct immersed in water are shown to be determined, in large extent, by the water mobility constraints imposed by the gel filling the pores. This is similar to the way that water mobility determines mechanical properties of highly hydrated tissues, such as articular cartilage. As a consequence, the apparent elastic modulus of the scaffold in compression tests is much higher than those of the empty scaffold or the gel. Thus this experimental model allows assessing fatigue behaviour of the scaffolds under long-term dynamic loading in a realistic way, without recourse to animal experimentation.The UPV group acknowledges the support of the Spanish MICINN through project MAT2010-21611-C03-01. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank the microscopy service of Universitat Politecnica de Valencia for useful help and advice and Ricardo Perez Feito for technical assistance in the experimental set up.Vikingsson, LKA.; Gallego Ferrer, G.; Gómez-Tejedor, JA.; Gómez Ribelles, JL. (2014). An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials. 32:125-131. https://doi.org/10.1016/j.jmbbm.2013.12.024S1251313

    Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels

    Full text link
    Thermal analysis of water in reinforce hydrogels of plasma-polymerised poly(2-hydroxyethyl acrylate) (plPHEA) grafted onto macroporous poly(methyl methacrylate) (PMMA) are explained in a simple thermodynamic framework based on the transition diagram. Water in bulk PHEA was also analysed for comparison with plPHEA. These two hydrophilic polymers were prepared with a broad range of water mass fractions from 0.05 to 0.72. Thermal transition diagrams of water/PHEA and water/plPHEA were determined showing less undercooling of water crystallisation in plPHEA than in PHEA. Kinetics of water crystallisation for high and low water contents were studied in both hydrophilic systems following several thermal treatments. Water crystallises much faster in plPHEA than in PHEA for high water contents. For low water contents, crystallisation becomes possible holding at 30 degrees C for some time due to water segregation in both PHEA systems. However, much less water is segregated from the water/plPHEA mixture due to the influence of the hydrophobic component.This work was supported by a Marie Curie Host Fellowship and by the Spanish Science and Technology Ministry through the MAT2001-2678-C02-01 and MAT2002-04239-C03-03 projects. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Serrano Aroca, Á.; Monleón Pradas, M.; Gómez Ribelles, JL.; Rault, J. (2015). Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels. European Polymer Journal. 72:523-534. https://doi.org/10.1016/j.eurpolymj.2015.05.032S5235347

    Molecular dynamics in polymer networks containing caprolactone and ethylene glycol moieties studied by dielectric relaxation spectroscopy

    Get PDF
    Copolymer networks with methacrylate main chain and caprolactone and ethylene glycol side groups were obtained by free radical copolymerisation of caprolactone methacrylate (CLMA) and poly(ethylene glycol) methacrylate (PEGMA). Dielectric relaxation spectroscopy was used to analyse molecular mobility of the different groups in the system. Only one main dielectric relaxation process was found in CLMA/PEGMA copolymer networks, located between those of the corresponding homonetworks, indicating that the system does not present phase separation. The copolymers show a secondary relaxation process at temperatures below −50 °C, which can be assigned to the overlapping of the corresponding secondary processes for the homopolymer networks; one of them was related to the local mobility of caprolactone units in CLMA and the second one was assigned to the twisting motions within ethylene glycol moiety in PEGMA. Besides the relaxation processes, the mobility of space charges has been analysed by means of conductivity and electric modulus formalisms.The support from the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds under the project MAT2012-38359-C03-01 is gratefully acknowledged.Sabater I Serra, R.; Escobar Ivirico, JL.; Romero Colomer, FJ.; Andrio Balado, A.; Gómez Ribelles, JL. (2014). Molecular dynamics in polymer networks containing caprolactone and ethylene glycol moieties studied by dielectric relaxation spectroscopy. Journal of Non-Crystalline Solids. 404:109-115. https://doi.org/10.1016/j.jnoncrysol.2014.08.013S10911540

    Departure from the vogel behaviour in the glass transition region-thermally stimulated recovery, creep and dynamic mechanical analysis studies

    Get PDF
    In this work the study of the dynamics of the segmental motions close to Tg of a poly(methyl methacrylate), PMMA, network was analysed by distinct mechanical spectroscopy techniques. Three techniques were employed: dynamic mechanical analysis (DMA), creep and thermally stimulated recovery (TSR). The time–temperature superposition principle was applied to the DMA and creep results, and master curves were successfully constructed. A change from a Vogel to an Arrhenius behaviour was observed in these results. Above Tg it was found a distinct temperature dependence for the retardation times calculated from creep and the relaxation times calculated from DMA. This unexpected behaviour was attributed to the merging of the a and the b relaxations that occurs in PMMA systems. The apparent activation energies ðEaÞ were also calculated from DMA, creep and TSR experiments. Above Tg the Ea values obtained agreed very well for all the techniques. In addition, the fragility exhibited by this material was investigated by the mechanical spectroscopy techniques referred above and by differential scanning calorimetry (DSC). The obtained values of the fragility index m indicated that the PMMA network is a kinetically fragile system. The thermodynamic manifestation of the fragility was also analysed

    Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field

    Full text link
    "NOTICE: this is the author's version of a work that was accepted for publication in Surface and Coatings Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Surface and Coatings Technology, VOL 377, (2019) DOI 10.1016/j.surfcoat.2019.06.097"[EN] The use of composite coatings is emerging as a great alternative to conventional coatings, allowing the combination of different superficial properties that are widely desired in surgical implants, such as osteointegration and bactericidal character, and cannot be provided by one material alone. In the present investigation the effect of the incorporation of a TiN-Ti intermediate bilayer on the chemical composition, structure, morphology, roughness, residual stresses and adhesion of a multi-layer Hydroxyapatite (HA)-Ag coating deposited on Ti-6Al-4V by magnetron sputtering was evaluated. Additionally, the cytotoxicity of the developed system was evaluated by in vitro tests. According to the results obtained, a decrease in the Ca/P ratio from 1.85 to 1.74 was obtained through the deposition of an HA-Ag system on the intermediate bilayer, and the crystallinity of the developed coating was favored. The multi-layer structure was effectively observed by field emission scanning electron microscopy, where it was possible to identify each of the HA, Ag, TiN and Ti layers. Meanwhile, an increase of 7% in crystallite size, a decrease of 36% in residual stresses and an increase of 32% in adhesion were registered for this composite coating compared to the free intermediate bilayer system. Finally, biological evaluation allowed the non-cytotoxic character of the deposited coatings to be confirmed.We thank the University of Antioquia, the Centro de Investigation, Innovation y Desarrollo de materiales (CIDEMAT) group, the Departamento Administrativo de Ciencia, Tecnologia e Innovation (COLCIENCIAS) for financing the Project 15-1696, the scholarship program of Enlazamundos, PR and JLGR acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1-R (AEI/FEDER, UE) (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Institute de Salud Carlos III with assistance from the European Regional Development Fund.Lenis, J.; Bejarano, G.; Rico Tortosa, PM.; Gómez Ribelles, JL.; Bolívar, F. (2019). Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology. 377:1-9. https://doi.org/10.1016/j.surfcoat.2019.06.097S19377Melero, H., Fernández, J., & Guilemany Casadamon, J. M. (2011). Recubrimientos bioactivos: Hidroxiapatita y titania. Biomecánica, 19(1). doi:10.5821/sibb.v19i1.1814Ozeki, K., Yuhta, T., Fukui, Y., & Aoki, H. (2002). Phase composition of sputtered films from a hydroxyapatite target. Surface and Coatings Technology, 160(1), 54-61. doi:10.1016/s0257-8972(02)00363-8Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1Mohseni, E., Zalnezhad, E., Bushroa, A. R., Abdel Magid Hamouda, Goh, B. T., & Yoon, G. H. (2015). Ti/TiN/HA coating on Ti–6Al–4V for biomedical applications. Ceramics International, 41(10), 14447-14457. doi:10.1016/j.ceramint.2015.07.081Nelea, V., Morosanu, C., Bercu, M., & Mihailescu, I. N. (2007). Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. Journal of Materials Science: Materials in Medicine, 18(12), 2347-2354. doi:10.1007/s10856-007-3135-1M.S. Tkachev, E.S. Melnikov, M.A. Surmeneva, A.A. Sharonova, R.A. Surmenev, O.S. Korneva, I.A. Shulepov, K. Loza, M. Epple, Adhesion properties of a three-layer system based on RF-magnetron sputter deposited calcium-phosphate coating and silver nanoparticles, Proc. - 2016 11th Int. Forum Strateg. Technol. IFOST 2016. (2017) 88–90. doi:https://doi.org/10.1109/IFOST.2016.7884197.E. Mohseni, E. Zalnezhad, a. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper, Int. J. Adhes. Adhes. 48 (2014) 238–257. doi:https://doi.org/10.1016/j.ijadhadh.2013.09.030.Sargeant, A., & Goswami, T. (2007). Hip implants – Paper VI – Ion concentrations. Materials & Design, 28(1), 155-171. doi:10.1016/j.matdes.2005.05.018Qi, J., Yang, Y., Zhou, M., Chen, Z., & Chen, K. (2019). Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 45(4), 4863-4869. doi:10.1016/j.ceramint.2018.11.183Ghasemi, S., Shanaghi, A., & Chu, P. K. (2017). Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638, 96-104. doi:10.1016/j.tsf.2017.07.049Thian, E. S., Huang, J., Barber, Z. H., Best, S. M., & Bonfield, W. (2011). Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surface and Coatings Technology, 205(11), 3472-3477. doi:10.1016/j.surfcoat.2010.12.012Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025Azem, F. A., Kiss, A., Birlik, I., Braic, V., Luculescu, C., & Vladescu, A. (2014). The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications. Ceramics International, 40(10), 15881-15887. doi:10.1016/j.ceramint.2014.07.116Ciobanu, C. S., Iconaru, S. L., Le Coustumer, P., Constantin, L. V., & Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Research Letters, 7(1). doi:10.1186/1556-276x-7-324Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B., … Epple, M. (2013). Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces, 102, 724-729. doi:10.1016/j.colsurfb.2012.09.040A. Quirama, A.M. Echavarría, J.M. Meza, J. Osorio, G. Bejarano G, Improvement of the mechanical behavior of the calcium phosphate coatings deposited onto Ti6Al4V alloy using an intermediate TiN/TiO2 bilayer, Vacuum. 146 (2017) 22–30. doi:https://doi.org/10.1016/j.vacuum.2017.09.024.Lenis, J. A., Hurtado, F. M., Gómez, M. A., & Bolívar, F. J. (2019). Effect of thermal treatment on structure, phase and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Thin Solid Films, 669, 571-578. doi:10.1016/j.tsf.2018.11.045Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A., & Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C, 43, 153-163. doi:10.1016/j.msec.2014.07.023Shiri, S., Ashtijoo, P., Odeshi, A., & Yang, Q. (2016). Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler. Surface and Coatings Technology, 308, 98-100. doi:10.1016/j.surfcoat.2016.07.098Barry, J. N., Cowley, A., McNally, P. J., & Dowling, D. P. (2013). Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. Journal of Biomedical Materials Research Part A, 102(3), 871-879. doi:10.1002/jbm.a.34755Constable, C. P., Yarwood, J., & Münz, W.-D. (1999). Raman microscopic studies of PVD hard coatings. Surface and Coatings Technology, 116-119, 155-159. doi:10.1016/s0257-8972(99)00072-9Cuscó, R., Guitián, F., Aza, S. d., & Artús, L. (1998). Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. Journal of the European Ceramic Society, 18(9), 1301-1305. doi:10.1016/s0955-2219(98)00057-0Ivanova, A. A., Surmeneva, M. A., Grubova, I. Y., Sharonova, A. A., Pichugin, V. F., Chaikina, M. V., … Surmenev, R. A. (2013). Influence of the substrate bias on the stoichiometry and structure of RF-magnetron sputter-deposited silver-containing calcium phosphate coatings. Materialwissenschaft und Werkstofftechnik, 44(2-3), 218-225. doi:10.1002/mawe.201300101Yonggang, Y., Wolke, J. G. C., Yubao, L., & Jansen, J. A. (2007). The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition. Journal of Materials Science: Materials in Medicine, 18(6), 1061-1069. doi:10.1007/s10856-007-0119-0Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005). A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, 26(33), 6477-6486. doi:10.1016/j.biomaterials.2005.04.028Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., & Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. doi:10.1016/j.jmbbm.2015.02.025M.A. Surmeneva, M. V. Chaikina, V.I. Zaikovskiy, V.F. Pichugin, V. Buck, O. Prymak, M. Epple, R. a. Surmenev, The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques, Surf. Coatings Technol. 218 (2013) 39–46. doi:https://doi.org/10.1016/j.surfcoat.2012.12.023.A. Ivanova, M.A. Surmeneva, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, O. Prymak, M. Epple, M. V Chaikina, R.A. Surmenev, Applied Surface Science Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films, 360 (2016) 929–935.Ding, S.-J., Ju, C.-P., & Lin, J.-H. C. (1999). Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research, 44(3), 266-279. doi:10.1002/(sici)1097-4636(19990305)44:33.0.co;2-4A.R.A. Sagari, Ca-P-O thin film preparation, modification and characterisation, Ph.D thesis, University of Jyväskylä, 2011. https://jyx.jyu.fi/bitstream/handle/123456789/37195/Arcot_Rajashekar-Ananda-2011.pdf?sequence=1.Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001Deligianni, D. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241-1251. doi:10.1016/s0142-9612(00)00274-xEchavarría, A. M., Rico, P., Gómez Ribelles, J. L., Pacha-Olivenza, M. A., Fernández-Calderón, M.-C., & Bejarano-G, G. (2017). Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications. Vacuum, 145, 55-67. doi:10.1016/j.vacuum.2017.08.020García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112Perdok, W. G., Christoffersen, J., & Arends, J. (1987). The thermal lattice expansion of calcium hydroxyapatite. Journal of Crystal Growth, 80(1), 149-154. doi:10.1016/0022-0248(87)90534-3Evans, A. G., Crumley, G. B., & Demaray, R. E. (1983). On the mechanical behavior of brittle coatings and layers. Oxidation of Metals, 20(5-6), 193-216. doi:10.1007/bf00656841ASTM C1624-05, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of, Astm. 05 (2015) 1–29. doi:https://doi.org/10.1520/C1624-05R15.Scope.Yang, Y. ., & Chang, E. (2001). Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V substrate. Biomaterials, 22(13), 1827-1836. doi:10.1016/s0142-9612(00)00364-1Lenis, J. A., Toro, L. J., & Bolívar, F. J. (2019). Multi-layer bactericidal silver - calcium phosphate coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 367, 203-211. doi:10.1016/j.surfcoat.2019.03.03

    An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage

    Full text link
    The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold's pores.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPVVikingsson, LKA.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics. 48(7):1310-1317. https://doi.org/10.1016/j.jbiomech.2015.02.013S1310131748

    Macroporous thin membranes for cell transplant in regenerative medicine

    Full text link
    The aim of this paper is to present a method to produce macroporous thin membranes made of poly (ethyl acrylate-co-hydroxyethyl acrylate) copolymer network with varying cross-linking density for cell transplantation and prosthesis fabrication. The manufacture process is based on template techniques and anisotropic pore collapse. Pore collapse was produced by swelling the membrane in acetone and subsequently drying and changing the solvent by water to produce 100 microns thick porous membranes. These very thin membranes are porous enough to hold cells to be transplanted to the organism or to be colonized by ingrowth from neighboring tissues in the organism, and they present sufficient tearing stress to be sutured with surgical thread. The obtained pore morphology was observed by Scanning Electron Microscope, and confocal laser microscopy. Mechanical properties were characterized by stress-strain experiments in tension and tearing strength measurements. Morphology and mechanical properties were related to the different initial thickness of the scaffold and the cross-linking density of the polymer network. Seeding efficiency and proliferation of mesenchymal stem cells inside the pore structure were determined at 2 hours, 1, 7, 14 and 21 days from seeding.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). J.R.R. acknowledges funding of his PhD by the Generalitat Valenciana through VALi+d grant (ACIF/2010/238). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge too the advice of Dr. Daniel Kelly, Dr. Conor Buckley and Dr. Yurong Liu about the isolation and expansion of porcine MSCs. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Antolinos Turpín, CM.; Morales Román, RM.; Ródenas Rochina, J.; Gómez Ribelles, JL.; Gómez-Tejedor, JA. (2015). Macroporous thin membranes for cell transplant in regenerative medicine. Biomaterials. 67:254-263. https://doi.org/10.1016/j.biomaterials.2015.07.032S2542636

    Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite

    Full text link
    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N3+ ions of energy 24 keV in the fluences of 1 x 10(15), 5 x 10(15) and 1 x 10(16) ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.G.M.S. acknowledges CSIR, India (Grant no: 09/468 (0474)/2013-EMR-I) and S.N.K. thanks the award of Erasmus-Mundus Svaagata for providing financial support to carry out this research. G.M.S., N.S. and S.N.K. acknowledge the support of UGC National facility for characterization facility. J.A.G.T. acknowledges the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project DPI2015-65401-C3-2-R (including the FEDER financial support). CIBER-BBN, Spain is an initiative funded by the VI National R&D Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. AFM was conducted by the microscopy service of the UPV, whose advice was greatly appreciated.Shanthini, GM.; Sakthivel, N.; Menon, R.; Nabhiraj, PY.; Gómez-Tejedor, JA.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.... (2016). Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite. Carbohydrate Polymers. 153:619-630. https://doi.org/10.1016/j.carbpol.2016.08.016S61963015

    Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds

    Full text link
    [EN] This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Vikingsson, L.; Antolinos Turpín, CM.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering: C. 61:651-658. https://doi.org/10.1016/j.msec.2015.12.068S6516586
    corecore