825 research outputs found

    Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability.

    Get PDF
    Orchardgrass, or cocksfoot [Dactylis glomerata (L.)], has been naturalized on nearly every continent and is a commonly used species for forage and hay production. All major cultivated varieties of orchardgrass are autotetraploid, and few tools or information are available for functional and comparative genetic analyses and improvement of the species. To improve the genetic resources for orchardgrass, we have developed an EST library and SSR markers from salt, drought, and cold stressed tissues. The ESTs were bi-directionally sequenced from clones and combined into 17,373 unigenes. Unigenes were annotated based on putative orthology to genes from rice, Triticeae grasses, other Poaceae, Arabidopsis, and the non-redundant database of the NCBI. Of 1,162 SSR markers developed, approximately 80% showed amplification products across a set of orchardgrass germplasm, and 40% across related Festuca and Lolium species. When orchardgrass subspecies were genotyped using 33 SSR markers their within-accession similarity values ranged from 0.44 to 0.71, with Mediterranean accessions having a higher similarity. The total number of genotyped bands was greater for tetraploid accessions compared to diploid accessions. Clustering analysis indicated grouping of Mediterranean subspecies and central Asian subspecies, while the D. glomerata ssp. aschersoniana was closest related to three cultivated varieties

    Conflict of interest and signal interference lead to the breakdown of honest signalling

    Get PDF
    Animals use signals to coordinate a wide range of behaviours, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaller. Theory suggests that honest signalling is favoured when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signalling, to test these predictions with an experimental evolution approach. We show that: (1) a reduced relatedness leads to the relative breakdown of signalling; (2) signalling breaks down by the invasion of mutants that show both reduced signalling and reduced response to signal; (3) the genetic route to signalling breakdown is variable; (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signalling. Our results provide clear support for signalling theory, but we did not find evidence for the previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Search for Doubly-Charged Higgs Boson Production at HERA

    Get PDF
    A search for the single production of doubly-charged Higgs bosons H^{\pm \pm} in ep collisions is presented. The signal is searched for via the Higgs decays into a high mass pair of same charge leptons, one of them being an electron. The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment at HERA. No evidence for doubly-charged Higgs production is observed and mass dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only decays into an electron and a muon via a coupling of electromagnetic strength h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3, masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
    corecore