33 research outputs found

    Controls on andesitic glaciovolcanism at ice-capped volcanoes from field and experimental studies

    Get PDF
    Glaciovolcanic deposits at Tongariro and Ruapehu volcanoes, New Zealand, represent diverse styles of interaction between wet-based glaciers and andesitic lava. There are ice-confined lavas, and also hydroclastic breccia and subaqueous pyroclastic deposits that formed during effusive and explosive eruptions into meltwater beneath the glacier; they are rare among globally reported products of andesitic glaciovolcanism. The apparent lack of hydrovolcanically fragmented andesite at ice-capped volcanoes has been attributed to a lack of meltwater at the interaction sites because either the thermal characteristics of andesite limit meltwater production or meltwater drains out through leaky glaciers and down steep volcano slopes. We used published field evidence and novel, dynamic andesite-ice experiments to show that, in some cases, meltwater accumulates under glaciers on andesitic volcanoes and that meltwater production rates increase as andesite pushes against an ice wall. We concur with models for eruptions beneath ice sheets showing that the glacial conditions and pre-eruption edifice morphology are more important controls on the style of glaciovolcanism and its products than magma composition and the thermal properties of magmas. Glaciovolcanic products can be useful proxies for paleoenvironment, and the range of andesitic products and the hydrological environments in which andesite erupts are greater than hitherto appreciated

    Submarine deposits from pumiceous pyroclastic density currents traveling over water: an outstanding example from offshore Montserrat (IODP 340)

    Get PDF
    Pyroclastic density currents have been observed to both enter the sea, and to travel over water for tens of kilometers. Here, we identified a 1.2-m-thick, stratified pumice lapilli-ash cored at Site U1396 offshore Montserrat (Integrated Ocean Drilling Program [IODP] Expedition 340) as being the first deposit to provide evidence that it was formed by submarine deposition from pumice-rich pyroclastic density currents that traveled above the water surface. The age of the submarine deposit is ca. 4 Ma, and its magma source is similar to those for much younger Soufrière Hills deposits, indicating that the island experienced large-magnitude, subaerial caldera-forming explosive eruptions much earlier than recorded in land deposits. The deposit’s combined sedimentological characteristics are incompatible with deposition from a submarine eruption, pyroclastic fall over water, or a submarine seafloor-hugging turbidity current derived from a subaerial pyroclastic density current that entered water at the shoreline. The stratified pumice lapilli-ash unit can be subdivided into at least three depositional units, with the lowermost one being clast supported. The unit contains grains in five separate size modes and has a >12 phi range. Particles are chiefly subrounded pumice clasts, lithic clasts, crystal fragments, and glass shards. Pumice clasts are very poorly segregated from other particle types, and lithic clasts occur throughout the deposit; fine particles are weakly density graded. We interpret the unit to record multiple closely spaced (<2 d) hot pyroclastic density currents that flowed over the ocean, releasing pyroclasts onto the water surface, and settling of the various pyroclasts into the water column. Our settling and hot and cold flotation experiments show that waterlogging of pumice clasts at the water surface would have been immediate. The overall poor hydraulic sorting of the deposit resulted from mixing of particles from multiple pulses of vertical settling in the water column, attesting to complex sedimentation. Slow-settling particles were deposited on the seafloor together with faster-descending particles that were delivered at the water surface by subsequent pyroclastic flows. The final sediment pulses were eventually deflected upon their arrival on the seafloor and were deposited in laterally continuous facies. This study emphasizes the interaction between products of explosive volcanism and the ocean and discusses sedimentological complexities and hydrodynamics associated with particle delivery to water

    Giant rafted pumice blocks from the most recent eruption of Taupo volcano, New Zealand: Insights from palaeomagnetic and textural data

    Get PDF
    Giant blocks of pumice lie strewn along a former shoreline of intracaldera Lake Taupo, New Zealand, and are the sole subaerial evidence of the most recent volcanism at the Taupo supervolcano. Geochemically they are identical to material erupted during the complex and multiphase 1.8 ka Taupo eruption, which they post-date by one to two decades. The blocks, some of which are >10 m long, show complex jointing patterns indicative of both surface chilling and continued interior expansion, as well as heterogeneous vesicularity, with dense rims (mean density 917 kg/m3) grading via an intervening transition zone (mean density 844 kg/m3) into a more highly vesicular interior (mean density 815 kg/m3). Analysis of thermal demagnetisation data indicates significant reorientation of the blocks as they cooled through a series of blocking temperatures. Some parts of block rims cooled to below 580 °C well before emplacement on the shore, whereas other parts in the interior and transition zones, which cooled more slowly, acquired different orientations before stranding. Some block interiors cooled after blocks were finally deposited, and record the direction of the 1.8 ka field. The blocks are believed to be derived from one or both of a pair of rhyolitic lava domes that developed on the bed of Lake Taupo several decades after the climactic Taupo eruption over the inferred vent area.These, and similar giant rafted pumice blocks in other marine and lacustrine settings raise a number of questions about how volatile-rich felsic magma can be erupted underwater with only limited thermal fragmentation. Furthermore, the prolonged flotation of out-sized fragments of vesiculated magma formed during subaqueous dome-growth contrasts with the rapid sinking of smaller pieces of hot plinian pumice under laboratory conditions. The genesis of pumice forming the blocks is not entirely clear. Most simply the blocks may represent part of a vesiculated carapace of a growing lava dome, broken loose as the dome grew and deformed then rising buoyantly to the surface. Parts of the carapace could also be released by local magma-water explosions. Some textures of the pumice, however, suggest fresher magma released from beneath the carapace. This may suggest that silicic dikes and pillows/pods intruded into a growing mound of silicic hyaloclastite, itself formed by quench fragmentation and thermal granulation of the dike margins. This fragmental cover would have inhibited cooling of a still-hot and actively vesiculating interior, which was then released to float to the surface by gravitational destabilisation and collapse of the growing pile. Following their formation, the large fragments of pumice floated to the lake's surface, where they were blown ashore to become embedded in accumulating transgressive shoreface sediments and continue cooling

    Physical volcanology of continental large igneous provinces: update and review

    No full text
    Large igneous provinces (LIPs) form in both oceanic and continental settings by the emplacement and eruption of voluminous magmas ranging from basalt to rhyolite in composition. Continental flood basalt provinces are the best studied LIPs and consist of crustal intrusive systems, extensive flood lavas and ignimbrites, and mafic volcaniclastic deposits in varying proportions. Intrusive rocks are inferred to represent the solidified remnants of a plumbing system that fed eruptions at the surface, as well as themselves representing substantial accumulations of magma in the subsurface. The vast majority of intrusive rock within the upper crust is in widespread sills, the emplacement of which may structurally isolate and dismember upper crustal strata from underlying basement, as well as spawning dyke assemblages of complex geometry. Interaction of dykes and shoaling sills with near-surface aquifers is implicated in development of mafic volcaniclastic deposits which, in better-studied provinces, comprise large vent complexes and substantial primary volcaniclastic deposits. Flood lavas generally postdate and overlie mafic volcaniclastic deposits, and are emplaced as pahoehoe flows at a grand scale (up to 104 km2) from eruptions lasting years to decades. As with modern Hawaiian analogues, pahoehoe flood lavas have erupted from fissure vents that sometimes show evidence of high lava fountains at times during eruption. In contrast to basaltic provinces, in which volcaniclastic deposits are significant but not dominant, silicic LIPs are dominated by deposits of explosive volcanism, although they also contain variably significant contributions from widespread lavas. Few vent sites have been identified for silicic eruptive units in LIPs, but it has been recognized that some ignimbrites have also been erupted from fissure-like vents. Although silicic LIPs are an important, albeit less common, expression of LIP events along continental margins, the large volumes of easily erodible primary volcaniclastic deposits result in these provinces also having a significant sedimentary signature in the geologic record. The inter-relationships between flood basalt lavas and volcaniclastic deposits during LIP formation can provide important constraints on the relative timings between LIP magmatism, extension, kilometre-scale uplift and palaeoenvironmental changes. Copyright IAVCEI 200

    Laboratory Experiments on Tsunamigenic Discrete Subaqueous Volcanic Eruptions. Part 1: Free Surface Disturbances

    No full text
    A submarine volcanic eruption has the potential to generate a dangerous local tsunami. To better understand the free surface disturbance generated by an underwater volcanic eruption, which will form the initial condition for any subsequent wave generation, we conducted a series of laboratory experiments. In these experiments, compressed air was injected into a tank filled with water to simulate an underwater eruption. The experiments were repeated over a range of different pressures and water depths. Each eruption can be divided into three phases: A momentum-driven jet, a buoyancy-driven plume, and a fountain-generation regime. Our experiments exhibit two fountain regimes (a dome regime and a finger regime), with a transition between them. These fountain regimes have been observed in several real submarine volcanic eruptions. This paper proposes a Froude number criterion to combine the water depths and source conditions together with the aspect ratios of fountains to quantify different fountain regimes. This quantitative relationship holds for two real subaqueous volcanic eruption cases (Myojin-Sho eruption in 1952 and 1996 eruption in Karymskoye Lake). The fountain of the Myojin-Sho shallow submarine eruption on September 23,1952 appears to have been in the dome regime, which means it was a relatively weak eruption. Unlike other eruptions from this volcano, which did generate tsunamis, no tsunami waves were detected on September 23. This study contributes to an enhanced understanding of the usually unseen mechanism of free surface disturbances by volcanic gas injection during submarine eruptions. © 2021. American Geophysical Union. All Rights Reserved

    Submarine deposits from pumiceous pyroclastic density currents traveling over water: An outstanding example from offshore Montserrat (IODP 340)

    Get PDF
    Pyroclastic density currents have been observed to both enter the sea, and to travel over water for tens of kilometers. Here, we identified a 1.2-m-thick, stratified pumice lapilli-ash cored at Site U1396 offshore Montserrat (Integrated Ocean Drilling Program [IODP] Expedition 340) as being the first deposit to provide evidence that it was formed by submarine deposition from pumice-rich pyroclastic density currents that traveled above the water surface. The age of the submarine deposit is ca. 4 Ma, and its magma source is similar to those for much younger Soufrière Hills deposits, indicating that the island experienced large-magnitude, subaerial caldera-forming explosive eruptions much earlier than recorded in land deposits. The deposit’s combined sedimentological characteristics are incompatible with deposition from a submarine eruption, pyroclastic fall over water, or a submarine seafloor-hugging turbidity current derived from a subaerial pyroclastic density current that entered water at the shoreline. The stratified pumice lapilli-ash unit can be subdivided into at least three depositional units, with the lowermost one being clast supported. The unit contains grains in five separate size modes and has a >12 phi range. Particles are chiefly subrounded pumice clasts, lithic clasts, crystal fragments, and glass shards. Pumice clasts are very poorly segregated from other particle types, and lithic clasts occur throughout the deposit; fine particles are weakly density graded. We interpret the unit to record multiple closely spaced (<2 d) hot pyroclastic density currents that flowed over the ocean, releasing pyroclasts onto the water surface, and settling of the various pyroclasts into the water column. Our settling and hot and cold flotation experiments show that waterlogging of pumice clasts at the water surface would have been immediate. The overall poor hydraulic sorting of the deposit resulted from mixing of particles from multiple pulses of vertical settling in the water column, attesting to complex sedimentation. Slow-settling particles were deposited on the seafloor together with faster-descending particles that were delivered at the water surface by subsequent pyroclastic flows. The final sediment pulses were eventually deflected upon their arrival on the seafloor and were deposited in laterally continuous facies. This study emphasizes the interaction between products of explosive volcanism and the ocean and discusses sedimentological complexities and hydrodynamics associated with particle delivery to water
    corecore