53 research outputs found
Variational Monte Carlo Calculations of H and He with a relativistic Hamiltonian - II
In relativistic Hamiltonians the two-nucleon interaction is expressed as a
sum of , the interaction in the rest frame,
and the ``boost interaction'' which depends upon the
total momentum and vanishes in the rest frame. The
can be regarded as a sum of four terms: , ,
and ; the first three originate from the
relativistic energy-momentum relation, Lorentz contraction and Thomas
precession, while the last is purely quantum. The contributions of and have been previously calculated with the
variational Monte Carlo method for H and He. In this brief note we
report the results of similar calculations for the contributions of and . These are found to be rather small.Comment: 7 pages, P-94-09-07
First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes
We overview nonequilibrium Green function combined with density functional
theory (NEGF-DFT) modeling of independent electron and phonon transport in
nanojunctions with applications focused on a new class of thermoelectric
devices where a single molecule is attached to two metallic zigzag graphene
nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make
possible injection of evanescent wavefunctions from ZGNRs, so that their
overlap within the molecular region generates a peak in the electronic
transmission. Additionally, the spatial symmetry properties of the transverse
propagating states in the ZGNR electrodes suppress hole-like contributions to
the thermopower. Thus optimized thermopower, together with diminished phonon
conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the
thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below
liquid nitrogen temperature. The reliance on evanescent mode transport and
symmetry of propagating states in the electrodes makes the
electronic-transport-determined power factor in this class of devices largely
insensitive to the type of sufficiently short conjugated organic molecule,
which we demonstrate by showing that both 18-annulene and C10 molecule
sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can
search for molecules that will further reduce the phonon thermal conductance
(in the denominator of ZT) while keeping the electronic power factor (in the
nominator of ZT) optimized. We also show how often employed Brenner empirical
interatomic potential for hydrocarbon systems fails to describe phonon
transport in our single-molecule nanojunctions when contrasted with
first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special
issue of the Journal of Computational Electronics on "Simulation of Thermal,
Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I.
Knezevic and Z. Aksamij
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
TOI-269 b: An eccentric sub-Neptune transiting a M2 dwarf revisited with ExTrA
We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI-269 (TIC 220 479 565, V = 14.4 mag, J = 10.9 mag, Ro = 0.40 Ro, Mo = 0.39 Mo, d = 57 pc). The exoplanet candidate has been identified in multiple TESS sectors, and validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determined mass, radius, and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P = 3.6977104 ± 0.0000037 days, a radius of 2.77 ± 0.12 R·, and a mass of 8.8 ± 1.4 M·. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e = 0.425-0.086+0.082, TOI-269 b has one of the highest eccentricities of the exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions
Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice
Centralized and Decentralized Contracts in a Moral Hazad Environment.
risk ; moral hazard
- …