29 research outputs found

    Outflow or galactic wind: The fate of ionized gas in the halos of dwarf galaxies

    Full text link
    Context: H\alpha images of star bursting irregular galaxies reveal a large amount of extended ionized gas structures, in some cases at kpc-distance away from any place of current star forming activity. A kinematic analysis of especially the faint structures in the halo of dwarf galaxies allows insights into the properties and the origin of this gas component. This is important for the chemical evolution of galaxies, the enrichment of the intergalactic medium, and for the understanding of the formation of galaxies in the early universe. Aims: We want to investigate whether the ionized gas detected in two irregular dwarf galaxies (NGC 2366 and NGC 4861) stays gravitationally bound to the host galaxy or can escape from it by becoming a freely flowing wind. Methods: Very deep H\alpha images of NGC 2366 and NGC 4861 were obtained to detect and catalog both small and large scale ionized gas structures down to very low surface brightnesses. Subsequently, high-resolution long-slit echelle spectroscopy of the H\alpha line was performed for a detailed kinematic analysis of the most prominent filaments and shells. To calculate the escape velocity of both galaxies and to compare it with the derived expansion velocities of the detected filaments and shells, we used dark matter halo models. Results: We detected a huge amount of both small scale (up to a few hundred pc) and large scale (about 1-2 kpc of diameter or length) ionized gas structures on our H\alpha images. Many of the fainter ones are new detections. The echelle spectra reveal outflows and expanding bubbles/shells with velocities between 20 and 110 km/s. Several of these structures are in accordance with filaments in the H\alpha images. A comparison with the escape velocities of the galaxies derived from the NFW dark matter halo model shows that all gas features stay gravitationally bound.Comment: 15 pages, 13 figures, accepted for publication in A&

    A kinematic study of the irregular dwarf galaxy NGC 2366 using HI and Halpha observations

    Full text link
    Abridged. Context. The metal content of dwarf galaxies and the metal enrichment of the intergalactic medium both suggest that mass loss from galaxies is a significant factor for the chemical evolution history of galaxies, in particular of dwarf galaxies. However, no clear evidence of a blow-away in local dwarf galaxies has been found so far. Aims. We therefore performed a detailed kinematic analysis of the neutral and ionised gas in the nearby star-forming irregular dwarf galaxy NGC 2366 in order to make predictions about the fate of the gas and to get a more complete picture of this galaxy. Methods. A deep Halpha image and Fabry-Perot interferometric data of NGC 2366 were obtained. They were complemented by HI synthesis data from the THINGS survey. We searched for line-splitting both in Halpha and HI by performing a Gaussian decomposition. To get an idea whether the expansion velocities are high enough for a gas blow-away, we used the pseudo-isothermal halo model, which gives us realistic values for the escape velocities of NGC 2366. The good data quality also allowed us to discuss some peculiarities of the morphology and the dynamics in NGC 2366. Results. A large red-shifted outflow north west of the giant extragalactic HII region with an expansion velocity of up to 50 km/s is found in Halpha, but not in HI. Additionally, a blue-shifted component north of the giant extragalactic HII region was detected both in Halpha and HI with an expansion velocity of up to 30 km/s. A comparison with the escape velocities of NGC 2366 reveals that the gas does not have enough kinetic energy to leave the gravitational potential.Comment: 15 pages, 14 figures, accepted for publication by A&

    The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud?

    Get PDF
    (Abridged) We present new, deep HI line and 20-cm radio continuum data of the very puzzling blue compact dwarf galaxy NGC 5253, obtained with the ATCA as part of the `Local Volume HI Survey' (LVHIS). Our low-resolution HI maps show the disturbed HI morphology that NGC 5253 possesses, including tails, plumes and detached HI clouds. The high-resolution map reveals an HI plume at the SE and an HI structure at the NW that surrounds an Ha shell. We confirm that the kinematics of the neutral gas are highly perturbed and do not follow a rotation pattern. We discuss the outflow and infall scenarios to explain such disturbed kinematics, analyze the environment in which it resides, and compare it properties with those observed in similar star-forming dwarf galaxies. The radio-continuum emission of NGC 5253 is resolved and associated with the intense star-forming region at the center of the galaxy. We complete the analysis using multiwavelength data extracted from the literature. We estimate the SFR using this multiwavelength approach. NGC 5253 does not satisfy the Schmidt-Kennicutt law of star-formation, has a very low HI mass-to-light ratio when comparing with its stellar mass, and seems to be slightly metal-deficient in comparison with starbursts of similar baryonic mass. Taking into account all available multiwavelength data, we conclude that NGC 5253 is probably experiencing the infall of a diffuse, low-metallicity HI cloud along the minor axis of the galaxy, which is comprising the ISM and triggering the powerful starburst. The tidally disturbed material observed at the east and north of the galaxy is a consequence of this interaction, which probably started more than 100 Myr ago. The origin of this HI cloud may be related with a strong interaction between NGC 5253 and the late-type spiral galaxy M 83 in the past.Comment: 19 pages, 12 figures, accepted for publication in MNRA

    Three-dimensional modeling of the HI kinematics of NGC 2915

    Full text link
    The nearby blue compact dwarf, NGC 2915, has its stellar disc embedded in a large, extended (~ 22 B-band scale-lengths) HI disc. New high-resolution HI synthesis observations of NGC 2915 have been obtained with the Australia Telescope Compact Array. These observations provide evidence of extremely complex HI kinematics within the immediate vicinity of the galaxy's star-forming core. We identify and quantify double-peaked HI line profiles near the centre of the galaxy and show that the HI energetics can be accounted for by the mechanical energy output of the central high-mass stellar population within time-scales of 10^6-10^7 yr. Full three-dimensional models of the HI data cube are generated and compared to the observations to test various physical scenarios associated with the high-mass star-forming core of NGC 2915. Purely circular HI kinematics are ruled out together with the possibility of a high-velocity-dispersion inter-stellar medium at inner radii. Radial velocities of ~ 30 km/s are required to describe the central-most HI kinematics of the system. Our results lend themselves to the simple physical scenario in which the young stellar core of the galaxy expels the gas outwards from the centre of the disc, thereby creating a central HI under-density. These kinematics should be thought of as being linked to a central HI outflow rather than a large-scale galactic blow-out or wind.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    On the nature of faint Low Surface Brightness galaxies in the Coma cluster

    Full text link
    This project is the continuation of our study of faint Low Surface Brightness Galaxies (fLSBs) in one of the densest nearby galaxy regions known, the Coma cluster. Our goal is to improve our understanding of the nature of these objects by comparing the broad band spectral energy distribution with population synthesis models. The data were obtained with the MEGACAM and CFH12K cameras at the CFHT. We used the resulting photometry in 5 broad band filters (u*, B, V, R, and I), that included new u*-band data, to fit spectral models. With these spectral fits we inferred a cluster membership criterium, as well as the ages, dust extinctions, and photometric types of these fLSBs. We show that about half of the Coma cluster fLSBs have a spectral energy distribution well represented in our template library while the other half present a flux deficit at ultraviolet wavelengths. Among the well represented, ~80% are probably part of the Coma cluster based on their spectral energy distribution. They are relatively young (younger than 2.3 Gyrs for 90% of the sample) non-starburst objects. The later their type, the younger fLSBs are. A significant part of the fLSBs are quite dusty objects. fLSBs are low stellar mass objects (the later their type the less massive they are), with stellar masses comparable to globular clusters for the faintest ones. Their characteristics are correlated with infall directions, confirming the disruptive origin for part of them.Comment: Accepted for publication in A&A, 10 pages, 10 figure

    A low H I column density filament in NGC 2403 : signature of interaction or accretion

    Get PDF
    Date of acceptance: 12/07/2014Observed H i accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion occurs in the form of low column density cold flows, as predicted by numerical simulations of galaxy formation. To constrain the presence and properties of such flows, we present deep H i observations obtained with the NRAO Green Bank Telescope of an area measuring 4° × 4° around NGC 2403. These observations, with a 5σ detection limit of 2.4 × 1018 cm-2 over a 20 km s-1 linewidth, reveal a low column density, extended cloud outside the main H i disk, about 17′ (~ 16 kpc or ~ 2 R25) to the NW of the center of the galaxy. The total H i mass of the cloud is 6.3 × 106 M⊙, or 0.15 percent of the total H i mass of NGC 2403. The cloud is associated with an 8 kpc anomalous-velocity H i filament in the inner disk, that was previously observed in deep VLA observations. We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigboring dwarf galaxyPeer reviewe

    Magnetic fields in Local Group dwarf irregulars

    Get PDF
    We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100m Effelsberg telescope at 2.64 and 4.85GHz. Magnetic fields in LG dwarfs are three times weaker than in the normal spirals (<4.2+-1.8muG). The production of total magnetic fields appears to be regulated mainly by the star-formation surface density, with the power-law exponent of 0.30+-0.04, or by the gas surface density (with the exponent 0.47+-0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91+-0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating a small-scale rather than a large-scale dynamo process. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman Break Galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8nG out to a distance of 160-530kpc at redshifts 5-3, respectively. Several times weaker fields and shorter magnetization distances are expected from primordial dwarf galaxies. We also predict that most star-forming local dwarfs might have magnetized their surroundings up to about 0.1muG within about 5kpc distance. Strong magnetic fields (>6muG) are observed only in dwarfs of extreme characteristics while typical LG dwarfs are unsuitable objects for the efficient supply of magnetic fields to the intergalactic medium.Comment: Published in Astronomy and Astrophysics, 15 pages, 11 figures, minor changes to version 1, Fig. 6 changed, discussion of interactions enlarge

    Non-circular motions and the cusp-core discrepancy in dwarf galaxies

    No full text
    Context. The cusp-core discrepancy is one of the major problems in astrophysics. It results from comparing the observed mass distribution of galaxies with the predictions of cold dark matter simulations. The latter predict a cuspy density profile in the inner parts of galaxies, whereas observations of dwarf and low surface brightness galaxies show a constant-density core. Aims. We want to determine the shape of the dark matter potential in the nuclear regions of a sample of six nearby irregular dwarf galaxies. Methods. In order to quantify the amount of non-circular motions that could potentially affect a mass decomposition, we first perform a harmonic decomposition of the H 
    corecore