71 research outputs found

    Adult helpers increase the recruitment of closely related offspring in the cooperatively breeding rifleman

    Get PDF
    Indirect fitness benefits gained through kin-selected helping are widely invoked to explain the evolution of cooperative breeding behavior in birds. However, the impact of helpers on productivity of helped broods can be difficult to determine if the effects are confounded by territory quality or if the benefit of helpers is apparent only in the long term. In riflemen Acanthisitta chloris, helping and group membership are effectively decoupled as adult helpers are individuals that have dispersed from their natal territory and live independently from breeders in “kin neighborhoods.” Nevertheless, helpers direct their care toward close relatives, suggesting that helping provides indirect fitness benefits. The aim of this study was to examine the benefits of helpers to recipient offspring in the rifleman, investigating both short- and long-term effects. The total amount of food delivered to nestlings in helped broods was greater than that received by broods without helpers. This did not result in any short-term increase in nestling mass or nestling body condition nor was there any reduction in length of the nestling period at helped nests. However, helpers were associated with a significant increase in juvenile recruitment, with twice the proportion of fledglings surviving to the next breeding season from helped broods relative to unhelped broods. Thus, helpers gain indirect fitness by improving the survival of kin, and in contrast to a previous study of riflemen, we conclude that kin selection has played a key role in the evolution of cooperative breeding in this species

    The design and function of birds’ nests

    Get PDF
    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct tradeoff between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds’ nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds’ nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s

    Flexibility but no coordination of visits in provisioning riflemen

    Get PDF
    Parental care strategies occupy a continuum from fixed investments that are consistent across contexts to flexible behaviour that largely depends on external social and environmental cues. Determining the flexibility of care behaviour is important, as it influences the outcome of investment games between multiple individuals caring for the same brood. We investigated the repeatability of provisioning behaviour and the potential for turn taking among breeders and helpers in a cooperatively breeding bird, the rifleman, Acanthisitta chloris. First, we examined whether nest visit rate is an accurate measure of investment by assessing whether carers consistently bring the same size of food, and whether food size is related to nest visit rate. Our results support the use of visit rate as a valid indicator of parental investment. Next, we calculated the repeatability of visit rate and food size to determine whether these behaviours are fixed individual traits or flexible responses to particular contexts. We found that riflemen were flexible in visit rate, supporting responsive models of care over ‘sealed bids’. Finally, we used runs tests to assess whether individual riflemen alternated visits with other carers, indicative of turn taking. We found little evidence of any such coordination of parental provisioning. We conclude that individual flexibility in parental care appears to arise through factors such as breeding status and brood demand, rather than as a real-time response to social partners

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and nonbreeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging speciespublishedVersio

    Embryonic Death Is Linked to Maternal Identity in the Leatherback Turtle (Dermochelys coriacea)

    Get PDF
    Leatherback turtles have an average global hatching success rate of ∼50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
    corecore