59 research outputs found

    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe

    An overview of the first decade of PollyNET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Get PDF
    © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 LicenseA global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.Peer reviewe

    Isolation and Identification of Alkaloids from Poisons of Fire Salamanders (Salamandra salamandra)

    No full text
    Fire salamanders (Salamandra salamandra) are conspicuously colored amphibians secreting a skin poison that contains unique steroid alkaloids such as samandarine (1) and samadarone (2), exhibiting toxic as well as antimicrobial activities. Because of their antipredatory and anti-infectious functions, alkaloids from Salamandra poison are of interest with regard to the threat that the lethal fungus Batrachochytrium salamandrivorans (Bsal) poses to salamanders. Nevertheless, reliable data on the biological activity of Salamandra alkaloids are scarce, in part due to the difficulty to obtain and study those substances. Thus, isolation of pure salamander alkaloids is an important task that might directly contribute to the understanding of Bsal infections. Here we present a noninvasive isolation procedure for samandarine (1) and O-acetylsamandarine (3), as well as for two new alkaloids, O-3-hydroxybutanoylsamandarine (4) and samanone (6), using HPLC. For the first time, high-field NMR data are presented for these alkaloids. Analysis using GC/MS and ESI+-MS, provided important information on the structural variability of these salamander alkaloids
    corecore