112 research outputs found

    Crustacés de la Réunion : décapodes et stomatopodes

    Get PDF

    Faune marine profonde des Antilles françaises : récoltes du navire Polka faites en 1993

    Get PDF
    Une collection de 107 organismes a Ă©tĂ© faite autour de la Guadeloupe, lors de pĂȘches au casier entre 100 et 1000 mĂštres de profondeur environ. Cette collection a Ă©tĂ© Ă©tudiĂ©e par plusieurs taxonomistes confirmĂ©s. Les crustacĂ©s reprĂ©sentent Ă  eux seuls, prĂšs de 75% des espĂšces. Pour l'essentiel (75 espĂšces), il s'agit de crustacĂ©s dĂ©capodes distribuĂ©s en nombre Ă©gal entre les types macroure, anomoure et brachyoure. Les quelques crustacĂ©s non dĂ©capodes (seulement 5 espĂšces) appartiennent aux ordres des Stomatopodes, Amphipodes, Isopodes. Une liste dĂ©taillĂ©e de ces espĂšces est fournie, accompagnĂ©e de remarques surl'intĂ©rĂȘt systĂ©matique, ou sur les potentialitĂ©s de pĂȘche. Pour faciliter le travail de dĂ©termination sur le terrain, lors des campagnes de pĂȘche exploratoire qui sont rĂ©alisĂ©es aux Antilles françaises, 37 espĂšces sont illustrĂ©es en couleur. Deux espĂšces sont, pour l'instant, reconnues nouvelles pour la Science (#Paguristes sp. nov. et #Cymonomus sp. nov.); 5 autres, qui ne sont pas encore dĂ©terminĂ©es avec prĂ©cision, pourraient Ă©galement ĂȘtre nouvelles. Les rendements sont gĂ©nĂ©ralement faibles, et les perspectives de dĂ©veloppement de la pĂȘche profonde assez limitĂ©e

    The Dividing Line between Federal and State Promotion of Aeronautics

    Get PDF
    <p>The model xeno-estrogen bisphenol A (BPA) has been extensively studied over the past two decades, contributing to major advances in the field of endocrine disrupting chemicals research. Besides its well documented adverse effects on reproduction and development observed in rodents, latest studies strongly suggest that BPA disrupts several endogenous metabolic pathways, with suspected steatogenic and obesogenic effects. BPA's adverse effects on reproduction are attributed to its ability to activate estrogen receptors (ERs), but its effects on metabolism and its mechanism(s) of action at low doses are so far only marginally understood. Metabolomics based approaches are increasingly used in toxicology to investigate the biological changes induced by model toxicants and chemical mixtures, to identify markers of toxicity and biological effects. In this study, we used proton nuclear magnetic resonance (<sup>1</sup>H-NMR) based untargeted metabolite profiling, followed by multivariate statistics and computational analysis of metabolic networks to examine the metabolic modulation induced in human hepatic cells (HepG2) by an exposure to low and very low doses of BPA (10<sup>−6</sup>M, 10<sup>−9</sup>M, and 10<sup>−12</sup>M), vs. the female reference hormone 17ÎČ-estradiol (E2, 10<sup>−9</sup>M, 10<sup>−12</sup>M, and 10<sup>−15</sup>M). Metabolomic analysis combined to metabolic network reconstruction highlighted different mechanisms at lower doses of exposure. At the highest dose, our results evidence that BPA shares with E2 the capability to modulate several major metabolic routes that ensure cellular functions and detoxification processes, although the effects of the model xeno-estrogen and of the natural hormone can still be distinguished.</p

    Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach

    Get PDF
    © 2018 Published by John Wiley & Sons Ltd. There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.Link_to_subscribed_fulltex

    A molecular genetic perspective of reproductive development in grapevine

    Get PDF
    The grapevine reproductive cycle has a number of unique features. Inflorescences develop from lateral meristems (anlagen) in latent buds during spring and summer and enter a dormant state at a very immature stage before completing development and producing flowers and berries the following spring. Lateral meristems are unique structures derived from the shoot apical meristem and can either develop into an inflorescence or a tendril. How the grapevine plant controls these processes at the molecular level is not understood, but some progress has been made by isolating and studying the expression of flowering genes in wild-type and mutant grapevine plants. Interestingly, a number of flowering genes are also expressed during berry development. This paper reviews the current understanding of the genetic control of grapevine flowering and the impact of viticulture management treatments and environmental variables on yield. While the availability of the draft genome sequence of grapevine will greatly assist future molecular genetic studies, a number of issues are identified that need to be addressed—particularly rapid methods for confirming gene function and linking genes to biological processes and traits. Understanding the key interactions between environmental factors and genetic mechanisms controlling the induction and development of inflorescences, flowers, and berries is also an important area that requires increased emphasis, especially given the large seasonal fluctuations in yield experienced by the crop and the increasing concern about the effect of climate change on existing wine-producing regions

    Challenges and perspectives for naming lipids in the context of lipidomics

    Get PDF
    Introduction: Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. Objectives: In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. Methods & Results: In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. Conclusion: Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks

    Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

    Get PDF
    The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes
    • 

    corecore