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Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional
groups within complex starting materials. Here we elucidate key structural and electronic factors controlling
the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles.
Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive
over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle
size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly
structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=0 over C=C
hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding
adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing
C=0 hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to
alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to
control the chemoselective hydrogenation of aromatic aldehydes.

groups within complex starting materials'~. This ability to activate and transform only certain chemical

functionalities without the use of protecting groups, and attendant improvements in atom efficiency (and
waste minimisation), also underpins catalysis’ green credentials®®. Catalytic hydrogenation of organic com-
pounds possessing multiple unsaturated bonds such as o,B-unsaturated aldehydes is particularly challenging®'?,
necessitating active sites able to discriminate closely related moieties, and in some instances achieve preferential
activation of a more thermodynamically stable function. Platinum is widely employed in heterogeneous catalytic
hydrogenation, able to reduce a plethora of functional groups, including C=C", C=C", C=0", C=N'%, NO,"
and aromatics™ with molecular hydrogen. Selective hydrogenation of allylic and benzylic aldehydes to unsat-
urated alcohols is a commercially important industrial process widely utilised within the flavor and fragrance,
agrochemical, and pharmaceutical sectors'®'?, however the development of requisite heterogeneous catalysts has
been hindered by the thermodynamic stability of C=0 relative to C=C bonds and lack of insight into fun-
damental structure-function relations'.

Tsang and co-workers attempted to elucidate the roles of geometric and electronic effects in Pt catalyzed
cinnamaldehyde (CinnALD) hydrogenation to cinnamyl alcohol (CinnOH) through studies of oleic acid/oley-
lamine stabilised mono- and bimetallic colloidal Pt nanoparticles. Selectivity towards CinnOH exhibited a strong
dependence on Pt nanoparticle size, with low coordination sites favoring C=C hydrogenation*>*". In contrast,
Zhu and Zaera found that CinnOH selectivity was insensitive to the size of silica supported Pt nanoparticles®,
although rates of CinnALD hydrogenation were structure sensitive, with (111) facets prevalent on larger particles
accounting for a five-fold increase in Turnover Frequency (TOF) between 1.3 and 2.4 nm particles. Bimetallic
catalysts formed via either one-pot synthesis or doping of Pt nanoparticles*>*"****, can afford enhanced selectivity
to CinnOH, although decoupling the role of promoters in blocking unselective sites versus electronic modifica-
tion of platinum itself has not proved possible. Surface science studies of crotonaldehyde, an aliphatic analogue of
CinnALD, have demonstrated that the molecular adsorption geometry is critical in directing final product
selectivity over Pt(111) surfaces, with high coverages lifting the C=C bond and tilting the C=0 bond with
respect to the surface>>. In an extension of this concept, thiolate adsorption onto Pt surfaces®” has been employed
to achieve selective C=0 activation®®, with phenylated thiols facilitating tunable, specific non-covalent interac-
tions with CinnALD and consequent molecular orientation with respect to the surface of Pt/Al,O; catalysts
thereby boosting CinnOH selectivity by 70%. This promotion was attributed to n-stacking interactions between

C hemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional
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self-assembled monolayers of such thiols and the phenyl ring of
CinnALD, which did not compromise the rate of product forma-
tion®®. Guo et al. have shown that confinement of Pt nanoclusters
within the cavity of metal-organic frameworks also promotes
CinnOH selectivity; steric constraints on the CinnALD geometry is
believed to hinder C=C planar adsorption, again promoting C=0
activation®. Despite this progress, kinetics of the CinnALD hydro-
genation reaction network have not yet been mapped in detail over
any heterogeneous catalyst, while for platinum there has been no
systematic study on the impact of particle size (over a wide range)
or H, pressure, or of support properties which influence not only
CinnALD hydrogenation® but also crotonaldehyde® and citral
hydrogenation®***. Consequently the nature of the active site
remains a matter for speculation, and little is known regarding the
effect of substituents, or the extent to which mechanistic models can
be extended to other conjugated aldehydes.

Here, we resolve the preceding controversies, elucidating the reac-
tion mechanism and kinetic pathways for CinnALD selective hydro-
genation over two families of silica supported catalysts of tailored
hydrophilicity and Pt nanoparticle size. To this end, the bulk and
surface properties of nanoparticles and silica supports were charac-
terised by XPS, XRD, HRTEM, SEM, CO chemisorption, DRIFTS,
ATR-IR and porosimetry. Kinetic profiling revealed that CinnALD
hydrogenation was structure insensitive, proceeding equally well
over small (<2 nm) or large (~15 nm) particles, however C=0
hydrogenation was profoundly structure sensitive, requiring large
metal ensembles. Complementary in situ powder XRD and operando
ATR-IR measurements provided valuable insight into the respective
roles of hydrogen pressure and support functionality in regulating
C=0 versus C=C hydrogenation, with the resulting insight success-
fully predicting the behaviour of a-methyl-trans-cinnamaldehyde
and benzylic aldehyde hydrogenation over Pt catalysts, highlighting
the generality of the concepts identified.

Results and Discussion

Catalyst characterization. Successful genesis of a hexagonal close
packed p6mm pore architecture within the parent mesoporous silica
support (characteristic of SBA-15) was confirmed by low angle
powder X-ray diffraction (Figure S1). Nitrogen porosimetry also
demonstrated type IV isotherms with type H1 hysteresis as expected
for SBA-15, with a BET surface area, mean BJH pore size and narrow
mesopore size distributions consistent with literature values (Table
S1)**%. The fumed silica exhibited a type II isotherm, indicating a
non-porous or macroporous material, and low BET surface area.
HRTEM shown in Figure S2 confirmed the ordered mesopore
network of SBA-15. Complimentary measurements on the two Pt-
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impregnated silica families evidenced pore arrangements and
mesopore diameters comparable to those of the parent SBA-15 and
fumed silica (Table S2). However, BET surface areas decreased for
both supports with increasing Pt loading, with the Pt/SBA-15
materials exhibiting the greatest loss (up to 20%), which we
attribute to micropore blockage consistent with t-plot analysis in
Table S2. Such surface area losses are in quantitative agreement
with those reported following Pd impregnation of the same
supports®. The smaller loss in surface area for the Pt/SiO, materials
was consistent with deposition of platinum nanoparticles
predominantly over the (proportionately larger) external surface
area of the fumed support.

Wide angle powder XRD (Figure S4) revealed exclusively fcc plat-
inum metal over both silicas. Platinum nanoparticle sizes estimated
from these reflections increased with loading, from 5.4 nm (0.5 wt%)
to 15 nm (2 wt%) for Pt/SBA-15, and 8.4 to 17 nm for the analogous
Pt/silicas; larger crystallites are expected for the latter due to the
lower surface area of the fumed silica. The size, dispersion and oxida-
tion state (Table S2, Figure S6) of silica supported platinum nano-
particles were sensitive to metal loading. Nanoparticle diameter
increased linearly with Ptloading over both silicas (Figure S6a), while
platinum dispersion (surface Pt° content) decreased (increased)
monotonically with diameter between 2 and 8 nm before reaching
a plateau for larger sizes (Figure S6b). Platinum dispersion and sur-
face oxidation state were solely a function of nanoparticle size for
both fumed and mesoporous silicas, irrespective of whether nitrate or
chloride precursor were employed, consistent with the generally-
held view of silica as a weakly interacting support; no unusual Pt
redispersion was observed, as has been postulated via Pt(IV)Cl, sur-
face complexes when using a hexachloroplatinic acid precursor®.

Cinnamaldehyde hydrogenation. The selective hydrogenation of
CinnALD was subsequently studied over both Pt/SiO, and Pt/SBA-
15 catalyst series (Figure S7-14). Initial hydrogenation rates fell
dramatically with increasing nanoparticle size (Figure la), exhibiting
an inverse proportionality with particle diameter, precisely as would
be anticipated if reactivity was dictated solely by the geometric
platinum surface area, irrespective of the local coordination number
of surface atoms or electronic structure. This structure insensitivity is
confirmed by calculating the corresponding TOFs for CinnALD
hydrogenation (Figure 1b), derived by normalizing the initial rate to
the surface density of metallic Pt atoms determined via CO
chemisorption and XPS, which were particle size (and support and
precursor) invariant at around 350 h™' under 1 bar H, for all
catalysts. Apparent activation energies for the highest loading Pt/SiO,
and Pt/SBA-15 catalysts were also identical at 21 kJ.mol ", implicating a
common reaction mechanism for CinnALD hydrogenation over both
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Figure 1| (a) Initial rate of CinnALD hydrogenation over silica supported platinum catalysts at 1 bar as a function of particle size; and (b) corresponding

turnover frequencies for CinnALD hydrogenation.
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Figure 2 | CinnOH selectivity after 7 h CinnALD hydrogenation over
silica supported platinum catalysts at 1 bar as a function of particle size.

supports. Similar TOFs between 200 and 350 h™' have been reported
for a narrow size distribution of platinum and ruthenium nanoparticles
supported on carbon nanofibers in atmospheric pressure CinnALD
hydrogenation”. However, this finding stands in contrast to a recent
report of room temperature CinnALD hydrogenation at 10 bar H, over
Pt/Aerosil silica catalysts, for which the TOF increased from 396 to
1836 h™' with increasing Pt particle size over the narrow range from
1.3 to 2.4 nm™; albeit, this previous study noted significant errors in
both activity and nanoparticle size, relying upon indirect estimates of
the surface Pt atom density via TEM from which to determine TOFs.
Considering the systematic behavior of the 18 different Pt/silica catalysts
in the present work, we find no evidence that CinnALD hydrogenation is
favoured over flat surfaces present on larger platinum nanoparticles. The
inverse proportionality of CinnALD hydrogenation initial rate on
particle size is consistent with a direct correlation between activity
and the geometric surface Pt atom density, ie. the rate of
cinnamaldehyde hydrogenation depended solely on the surface
area:zvolume ratio (o< particle diameter™), with no preference for
specific platinum facets. The latter also suggests that all catalysts
underwent rapid in situ reduction to present a similar, metallic
platinum surface species exhibiting similar electronic structure.

By comparison, selectivity towards the desired CinnOH product
was strongly dependent on particle size and support morphology
(Figure 2), increasing linearly from essentially zero over the smallest
(2 nm) particles, to 12% and 40% for 15 nm particles on the fumed
silica and mesoporous SBA-15 supports respectively. Identical trends
were observed during the first hour of reaction (Figure S12). This
particle size dependence is consistent with a number of previous
reports for Ru***’, Co* and Pt***7*! catalysts, and is generally attrib-
uted to an increase in the density of Pt (111) facets relative to lower
coordination sites over larger nanoparticles, which hamper close
approach of the C=C bond and hence favour C=0 hydrogena-
tion*>*"*>**_ This hypothesis is supported by extended Hiickel calcu-
lations of Delbecq and Sautet which revealed that di-6¢c CinnALD
adsorption is strongly destabilised over Pt(111) facets with respect to
a di-oco mode, and hence favour C=0 hydrogenation, in compar-
ison with Pt(100) and stepped facets which stabilise a co-planar n,4
di-Gco + Me—c or trihapto mc—c + (O) mode, and hence favour
C=C hydrogenation*!. Recent DFT calculations indicate that the
activation barrier to C=C hydrogenation of allylic aldehydes and
ketones over Pt(111) remains lower than that of C=0 hydrogena-
tion, but also suggest that phenyl substitution o to the C=C bond
should slow its rate of hydrogenation*. This body of literature stands
in contrast to the high pressure study of Zhu and Zaera®, who
reported a similar low initial selectivity (~20%) towards CinnOH
over Pt/Aerosil silica to that in the present work, but surprisingly

found this selectivity insensitive to particle size or CinnALD conver-
sion (below 80%) for sub 2.4 nm nanoparticles.

Other major reaction products were 3-phenyl propionaldehyde >
3-phenyl propan-1-ol > ethylbenzene: high selectivity to the satu-
rated aldehyde demonstrates that undesired C=C hydrogenation
competes strongly with C=0 hydrogenation, with ethylbenzene a
by-product of 3-phenyl propionaldehyde and/or 3-phenyl propan-1-
ol hydrogenolysis. CinnOH selectivity increased continuously over
the course of reaction for all catalysts, doubling its value between 1
and 7 h. This improved selectivity occurred at the expense of 3-
phenyl propionaldehyde and 3-phenyl propan-1-ol for the Pt/SBA-
15 and Pt/SiO; catalysts respectively (Figure S9). Note that the prin-
cipal product during the early stage of reaction over 2 wt% Pt/SiO,
was 3-phenyl propan-1-ol, a secondary product arising from hydro-
genation of either cinnamyl alcohol or 3-phenyl propionaldehyde.
The absence of CinnOH primary product can be rationalised by
considering that the rate of its hydrogenation (and hence removal
from the reaction mixture) is >40 times faster than its initial rate of
formation (see below), accounting for a very low CinnOH and high
concentration of 3-phenyl propan-1-ol secondary product; onstream
deactivation of this rapid CinnOH hydrogenation step would
account for its subsequent accumulation at higher conversions.
Literature in this regard is conflicted, with a strong product depend-
ence on CinnALD conversion reported over Pt*®, Ir*” and Ru*®, while
other researchers note minimal change in CinnOH selectivity for
conversions <80%>*"**~*°. From the present kinetic investigation
we can conclude that C=C hydrogenation is initially heavily
favoured over Pt/SBA-15, but that this pathway is rapidly switched
off during the early stages of CinnALD hydrogenation, possibly due
to surface crowding by strongly bound adsorbates®.

The observed structure sensitivity of CinnOH selectivity upon Pt
nanoparticle size seen in Figure 2 was five times greater for Pt/SBA-
15 catalysts. Since CinnALD hydrogenation proceeds with a com-
mon TOF over both supports, this difference cannot be readily
ascribed to differential mass-transport (which should in any event
favour more rapid removal of the reactively-formed CinnOH for Pt/
SiO,, wherein reaction occurs largely on the external surface area,
and hence higher selectivity to this desired product). Net CinnOH
selectivity is a function of both the rate of C=0 (versus C=C)
hydrogenation of the CinnALD reactant, and of secondary hydro-
genation of the allylic alcohol product to 3-phenyl propanol. The
preceding observations can only therefore be understood by also
considering the support dependence of CinnOH hydrogenation;
we therefore undertook parallel studies employing CinnOH and 3-
phenyl propionaldehyde as substrates.

Figure 3a highlights a dramatic difference in CinnOH reactivity
over fumed silica versus SBA-15 supported Pt nanoparticles of sim-
ilar loading (~2 wt%) and size (~15 nm), in precisely the regime
wherein the most significant differences in CinnALD hydrogenation
to the alcohol were identified in Figure 2. However, the question
remains as to whether the support also influences the rate of
CinnOH formation. Selective hydrogenation studies of 3-phenyl pro-
pionaldehyde, the primary product resulting from CinnALD C=C
hydrogenation, revealed identical rates of its removal over both 2
wt% catalysts (Figure 3b), and hence selectivity to this saturated
aldehyde is determined only by the relative rates of CinnALD
C=C versus C=0 hydrogenation. Since CinnALD selectivity
towards 3-phenyl propionaldehyde differs at 39% (SBA-15) versus
51% (SiO,), we can conclude that the support does somewhat impact
upon the rates of C=C versus C=0 hydrogenation, and hence also
influences the rate of CinnOH formation. In other words, the
observed differences in selective hydrogenation of CinnALD to
CinnOH over the fumed versus mesoporous supports are dominated
by their differing reactivity towards the unsaturated alcohol primary
product, but are also influenced by their interaction with CinnALD.
The former finding is in excellent agreement with DFT calculations
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Figure 3| (a) CinnOH and (b) 3-phenyl propionaldehyde hydrogenation over 2 wt% silica supported platinum catalysts at 1 bar.

by Laref and co-workers for allylic aldehyde hydrogenation over
Pt(111) model surfaces, which showed that selectivity to unsaturated
alcohols is determined predominantly by the strength of their
binding®'.

A complete reaction network for CinnALD hydrogenation is
shown in Figure 4 below, with reaction rates determined for each
step over the highest loading Pt catalysts. This highlights the critical
reactivity difference between the two silica supports, namely that
fumed silica favor C=C hydrogenation of both CinnALD and the
desired CinnOH product, whereas SBA-15 is more selective towards
CinnOH formation and suppresses its subsequent removal.

Support effects upon CinnALD hydrogenation and CinnOH
selectivity have been noted for carbon®>*° and oxide**** supported
Pt NPs. In the former case, annealed carbon nanofibers were postu-
lated to produce non-polar surfaces favouring CinnALD adsorption
via the benzene ring directly on the support; however, such non-
polar nanofibers were far less selective to CinnOH than their oxy-
gen-rich, acidic counterparts. In contrast, Ji et al. recently reported
graphene-based catalysts as more selective towards CinnOH than
Vulcan carbon analogues®™ which possess more polar surfaces™,
attributed to the higher proportion of Pt metal present on graphene.
Lewis acidic Al-SBA-15 and Al,O3*® supports also exhibit enhanced
CinnOH selectivity, hypothesised due to preferential adsorption of
the polar C=0O function at sites adjacent to Pt nanoparticles. In order
to identify whether the differing reactivity of our fumed silica and
SBA-15 supported platinum catalysts seen in Figure 2-3 was likewise
a consequence of surface polarity, DRIFT spectra of the parent sup-
ports and high loading Pt catalysts were compared. Figure 5 high-
lights a striking difference in the silanol surface density and

CinnCHO 3-phenyl propionaldehyde
90
(SiOy) x
NS 12 : S
(SBA-15) N
21(isio,) 8
74((sBA-15) §/
883
(SiOy)
OH 31
< (SBA-15)
CinnOH 3-phenyl propan-1-ol

Figure 4 | Kinetic network for CinnALD hydrogenation over 2 wt% Pt/
silica catalysts. Values refer to the initial rates of each step in
mmolh™".gp "

coordination mode between the two silica supports: mesoporous
SBA-15 possesses almost twice the density of surface silanols of the
fumed silica (3.0 vs. 1.6 mmol.g™" respectively), and is dominated by
geminal/vicinal silanol groups whereas fumed silica only exhibits iso-
lated silanols. Vicinal silanols comprise extended, hydrogen bonded
hydrophilic patches™, and hence our SBA-15 catalysts are indeed
extremely polar compared to those prepared from fumed silica (whose
hydrophobicity as a consequence of isolated silanols has been recently
described™). Since the physicochemical properties of Pt nanoparticles
in terms of electronic charge (XPS), phase (XRD) and size (TEM/CO
chemisorption) are essentially identical over both supports, it therefore
seems entirely plausible that the higher selectivity to CinnOH of the
Pt/SBA-15 arises from molecular re-orientation of the CinnALD
reactant and/or reactively-formed hydrogenation products. Hence
SBA-15 is expected to disfavour CinnALD and CinnOH adsorption
geometries over platinum which require close approach of the apolar
phenyl ring to the support surface, as necessary to effect C=C hydro-
genation at the nanoparticle-support perimeter, and conversely favour
adsorption configurations in which the C=0 function is proximate to
the support with the molecular plane oriented away from the surface.
A similar concept has been advanced for crotonaldehyde (the aliphatic
C, analogue of CinnALD) over a Pt(111) single crystal wherein
molecular tilting distances the C=C bond from the surface while
activating the C=0 bond towards hydrogenation®®.

The preceding hypothesis was tested via an in situ ATR-IR study of
CinnALD adsorption from a 0.84 M anisole solution over films of 2
wt% Pt/Si0O, and 2 wt% Pt/SBA-15 catalysts at 90°C. This mimics the
actual reaction conditions utilised during our catalytic studies of
CinnALD hydrogenation, but without the presence of dissolved
hydrogen and attendant complications arising from IR signatures
due to hydrogenation products. Vibrational spectra over both cata-
lyst films were temperature independent between room temperature
and 90°C, and exhibited characteristic vc—o and symmetric Ve—c
bands of the parent CinnALD at 1678 and 1624 cm™' respectively
(Figure 6). However, a key difference is apparent in the aromatic
C=C regime, wherein bands at 1600 and 1594 cm™" associated with
the aromatic C=C stretches are absent from Pt nanoparticles dis-
persed over the polar SBA-15 support, indicating loss of conjugation
across CinnALD due to adsorption through the carbonyl function
and associated molecular reorientation relative to that adopted on
nanoparticles residing on the less polar fumed silica, consistent with
the above model. CinnALD hydrogenation proceeds with a common
apparent activation energy of 21 kJ.mol™" over 2 wt% SBA-15 and
fumed silica, supporting the notion that the differing selectivity of
these catalysts reflects different modes of CinnALD adsorption over
each support, rather than e.g. types of hydrogenation active sites. In
summary, the higher selectivity of Pt/SBA-15 towards CinnOH dur-
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Figure 5| In vacuo DRIFT spectra of 2 wt% silica supported Pt catalysts dried at 200°C; assignment of silanol functions and associated vibrational

frequencies for silica surfaces.

ing CinnALD hydrogenation appears associated with a molecular
reorientation of the phenyl ring due to repulsive interactions with
surface silanols, facilitating preferential di-cco adsorption and sub-
sequent C=0 hydrogenation (illustrated in Figure 6).

Our proposition that polar supports favour selective C=0 hydro-
genation of aromatic aldehydes (through molecular reorientation)
was tested for the hydrogenation of benzylic aldehydes over the same
2 wt% Pt/SBA-15 and Pt/SiO, catalysts. Figure 7 summarises the
resulting performance, from which it is evident that the more polar
Pt/SBA-15 outperforms the fumed silica support in respect of C=0
versus C=C hydrogenation/hydrogenolysis for all substrates, as pos-
tulated. It has been speculated that methyl substituents stabilise
adsorbed m-complexed aromatics resulting in higher barriers to ring
hydrogenation®**, rationalising the superior selectivity we observe
towards alkyl-substituted benzylic alcohols versus benzyl alcohol.
Surprisingly, Pt/SBA-15 was also more active towards all five benzylic
aldehydes than Pt/SiO,, whereas it was marginally less active towards
CinnALD (13% versus 19% conversion respectively). This may be a
consequence of faster desorption of the less polar benzylic products
away from the SBA-15 surface. Figure 7 shows that electron-donat-
ing alkyl substituents accelerated benzaldehyde hydrogenation over
both silica supports, presumably via activation of the carbonyl func-
tion (in addition to the aromatic ring).

Heated

i flow cell
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e
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Liquid phase catalytic hydrogenations typically exhibit strong pos-
itive reaction orders in hydrogen partial pressure, reflecting the
increased availability of atomic hydrogen as a consequence of higher
solubility (Henry’s Law). The impact of hydrogen pressure upon
CinnALD hydrogenation was therefore investigated over the most
selective 2 wt% Pt/SiO, and Pt/SBA-15 catalysts in a stirred batch
autoclave under a constant hydrogen pressure between 1 and 10 bar.
As anticipated, increasing the hydrogen pressure increased the initial
rate and associated TOF of CinnALD hydrogenation (and final con-
versions) over both supported Pt catalysts (Figure S18). Similar
trends have been reported for atmospheric*” versus high pressure
(48 bar)*® CinnALD hydrogenation over carbon nanofiber supported
platinum, wherein TOFs rose from ~200 to 828 h™" respectively.
While the fumed silica proved slightly more pressure sensitive, the
reaction order in pH, only ranged from 0.4 to 0.6 between the two
supports, close to the 0.5 value expected if the rate-determining step
involves the reaction of CinnALD with a single hydrogen adatom
originating from the dissociative adsorption of molecular H, (as
previously observed for reduced platinum nanoparticles over deox-
ygenated carbon nanofibers at ambient pressure®). The positive
order in pH, demonstrates that vacant surface sites remain available
for dissociative chemisorption of hydrogen over the pressure range
explored, with atomic hydrogen participating equally in the two

Figure 6 | (left) In situ ATR-IR spectra of 2 wt% silica supported Pt catalysts films under a flowing CinnALD/anisole solution at 90°C and (right)
illustration of unfavorable aromatic-surface interaction arising from adoption of di-6c¢ versus di-6co CinnALD adsorption on platinum

nanoparticles within polar SBA-15 pores.
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Figure 7 | Performance of 2 wt% silica supported Pt catalysts at 7 h for
the hydrogenation of substituted benzaldehydes under standard reaction
conditions employed for CinnALD hydrogenation.

competing pathways for CinnALD hydrogenation to CinnOH or 3-
phenyl propionaldehyde, evidenced by the independence of reaction
order on product selectivity (see discussion below).

The influence of hydrogen pressure upon selectivity (Figure S13)
was even more striking than on activity. Figure 8 reveals that
CinnALD hydrogenation to CinnOH was favoured over both fumed
silica and SBA-15 at higher pressures. Such enhanced selectivity at
higher pH, was reported for Co-doped Pt nanocrystals, though no
explanation was given®. For the 2 wt% Pt/SBA-15 catalyst, CinnOH
selectivity exceeded 90% at 10 bar, accompanied by trace 3-phenyl
propionaldehyde, while for the 2 wt% Pt/SiO, selectivity rose to 56%
(predominantly at the expense of ethylbenzene via 3-phenyl propa-
nol hydrogenolysis, Figure S13). This switchover from C=Cto C=0
hydrogenation with increasing pH, is best illustrated by comparing
the ratio of CinnOH to 3-phenyl propionaldehyde, which increases
22-fold over the SBA-15 support versus three-fold for the fumed
silica, highlighting the greater sensitivity of the mesostructured cata-
lyst to experimental conditions and its superior potential for
CinnOH production. Comparison at a common conversion level
reveals qualitatively similar trends (Table S3).

The origin of this selectivity enhancement remains unclear, how-
ever a number of possibilities occur. High hydrogen pressures may
promote Pt nanoparticle restructuring with consequent changes in
particle size or exposed facet. In situ XAS measurements by Mistry
and co-workers revealed 1 nm platinum clusters underwent a
2D—3D transformation over y-Al,O5 with increasing pH, 1 to 21
bar at room temperature®®: specifically, (111) bilayers were proposed
to transform into cuboctahedra, which would represent a 70% loss of
(111) facets at the expense of (100) facets®. Extended Hiickel calcu-
lations by Delbecq and Sautet suggest that Pt(111) facets favour a di-
Gco CinnALD adsorption mode (and hence C=O0 hydrogenation),
whereas Pt(100) facets favour a co-planar n4 mode and hence C=C
hydrogenation*. For the work of Mistry et al., the high pressure
hydrogen-induced switchover from (111) to (100) facets would be
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Figure 8 | Hydrogen pressure dependence of C=0 versus C=C
hydrogenation pathways during CinnALD hydrogenation over 2 wt%
silica supported Pt catalysts.

predicted to lower selectivity to CinnOH. In order to assess whether
such restructuring could occur during high pressure CinnALD
hydrogenation, we conducted in situ powder XRD of silica supported
2 wt% Pt catalysts between atmospheric pressure and 7 bar. A small,
but systematic fcc platinum lattice expansion (~0.0004 nm = 0.1%)
was observed over both supports (Figure S15), being greater for the
SBA-15 sample, and which proved largely reversible upon removing
hydrogen. Such an expansion is ten times smaller than that observed
during the analogous in situ XAS study of Pt/y-Al,Os, and the ratio
of (111):(200) X-ray reflections was independent of hydrogen pres-
sure, suggesting that hydrogen does not induce significant changes in
either nanoparticle shape or size in the present work; this is hardly
surprising considering that our 2 wt% catalysts comprise much larger
particles of around 15 nm, which thermodynamic calculations pre-
dict should exist as stable decahedra®*®'. The magnitude of lattice
expansions in Figure S15 are also much less than the 2-4% calcu-
lated/experimentally observed for hydride formation®**> or hydro-
gen chemisorption over strained sub-5 nm Pt nanoparticles®,
wherein hydrogen e.g. weakens metal-support interactions, relaxing
Pt-Pt distances for smaller particles towards the bulk value. It there-
fore seems highly unlikely that the selectivity enhancements
observed in the present study are attributable to hydrogen-induced
restructuring of Pt, but rather a rise in hydrogen surface atom den-
sity®®; concomitant surface crowding destabilising the sterically-
demanding 14 di-cco + Mc—c mode thus switching off the C=C
hydrogenation pathway. Vergunst et al. proposed a coverage
dependent change in CinnALD adsorption mode from flat-lying
M, di-occ or Ny di-Gco + TMc—c to carbonyl end-on adsorption
M, di-6c—o with increasing CinnALD coverage over Pt/C*.

a-Methyl-trans-cinnamaldehyde hydrogenation. The preceding
investigations revealed that destabilisation of C=C relative to
C=0 adsorption modes of CinnALD over platinum nanoparticles
favour its selective hydrogenation to CinnOH. We therefore
hypothesised that increasing the steric bulk around the alkene
function for a fixed particle size and support polarity, should also
hinder di-o¢c or Ny di-cco + Tc—c adsorption and promote the
formation of desirable unsaturated alcohols. o-Methyl-trans-
cinnamaldehyde (2-methyl-3-phenylacrolein) hydrogenation was
consequently examined over low and high loading Pt nanoparticles
supported on fumed silica and more polar SBA-15. The resulting
selectivity to o-methyl-trans-cinnamyl alcohol versus 2-methyl-3-
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phenyl  propanol/2-methyl-3-phenyl  propionaldehyde  was
compared with that for CinnALD hydrogenation to CinnOH
versus  3-phenyl propan-1-ol/3-phenyl propionaldehyde in
Figure 9, i.e. propensity for C=0 versus C=C hydrogenation. The
results of methyl substitution were striking, significantly favoring
C=0 hydrogenation to the desired unsaturated alcohol product
over C=C hydrogenation to the unsaturated aldehyde/alcohol in
all cases by 15-55%. This enhancement was somewhat greater
(~10% more) for larger nanoparticles, as anticipated due to
increased steric hindrance around the C=C center hindering close
approach of the alkene function on extended platinum terraces.
However, the impact of silica hydrophilicity was far more
dramatic, with selectivity to o-methyl-trans-cinnamyl alcohol
enhanced by ~30% over the polar SBA-15 relative to fumed silica,
evidencing a strong support effect, with more hydrophobic allylic
aldehydes preferentially orientated to favor di-6¢o adsorption on Pt
nanoparticles dispersed on polar supports.

Conclusions
The liquid phase, selective hydrogenation of CinnALD to CinnOH
over silica supported Pt nanoparticles strongly depends upon the
physicochemical properties of the catalyst and reaction conditions.
CinnALD hydrogenation is structure-insensitive with respect to
metallic platinum, whereas high selectivity to desired CinnOH prod-
uct requires large metal ensembles which favor C=0 versus C=C
hydrogenation. Support polarity also influences product selectivity,
with a polar SBA-15 mesoporous silica proving superior to a weakly
hydroxylated fumed, low area silica, the former enhancing C=0
hydrogenation to the unsaturated alcohol while suppressing its sub-
sequent hydrogenation to 3-phenyl propan-1-ol. In situ ATR-IR
surface sensitive spectroscopy implicates a change in CinnALD ori-
entation over the more polar SBA-15 support as the origin of this
enhanced selectivity. The generality of this phenomenon was estab-
lished through the first systematic study of alkyl-substituted benzal-
dehydes, whose selective carbonyl hydrogenation was similarly
promoted over SBA-15 with respect to fumed silica.

Increasing hydrogen pressures between 1—10 bar accelerated
CinnALD hydrogenation over both silica supports. However high
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Figure 9 | Impact of methyl substitution alpha to the carbonyl in
CinnALD upon the rates of C=C versus C=0 hydrogenation over small
and large Pt nanoparticles supported on fumed or polar mesoporous
SBA-15 silicas.

PH, pressures also induced a dramatic switchover in CinnALD reac-
tion pathway from predominantly C=C (1 bar) to >90% C=0
hydrogenation (10 bar). In the absence of any apparent change in
either platinum oxidation state or morphology, we attribute this
significant promotion to the effects of surface crowding upon
CinnALD adsorption, with less sterically-demanding 1, di-cc-o
binding favored over di-Gcc and N4 di-cco + mc—c modes. This
hypothesis finds support from experiments on o-methyl-trans-cin-
namaldehyde, wherein methylation of the alkene function increases
selective hydrogenation of the C=0 versus C=C bond with respect
to CinnALD, particularly over the polar SBA-15 support for which
close approach of the aromatic and methylated alkene functions are
disfavored.

Platinum-catalyzed chemoselective hydrogenation of unsaturated
aldehydes requires careful tuning of metal particle size/oxidation
state and support polarity, in concert with high hydrogen pressures
in order to achieve high selectivity to the corresponding unsaturated
alcohols.

Methods

Catalyst synthesis. SBA-15 was synthesised following the method of Stucky and co-
workers®. Briefly, 10 g Pluronic P123 was dissolved in 75.5 cm® water and 291.5 cm’
of 2 M hydrochloric acid under stirring at 35°C. Tetraethylorthosilicate (15.5 cm?)
was subsequently added and left stirring for 20 h. The resulting gel was aged for 24 h
at 80°C without agitation. The solid was filtered, washed with 1000 cm® water, and
dried at room temp before calcination at 500°C for 6 h in air (ramp 1°C.min™"). The
resulting silica exhibited the expected ordered, hexagonal (p6mm) arrangements of
monodispersed, uniform mesopores.

2 g batches of mesoporous SBA-15 were wetted with 16 cm® of aqueous ammo-
nium tetrachloroplatinate (II) or tetraammine platinum (II) nitrate solutions (pre-
cursor concentrations adjusted to achieve nominal Pt loadings spanning 0.05 to 2
wt%). Resulting slurries were stirred for 18 h at room temperature before heating to
50°C. Agitation was ceased after 5 h, and the solids dried for a further 24 h at 50°C to
yield a powder. Powder samples were calcined at 500°C for 4 h in air (1°C.min~"
ramp rate), prior to reduction at 400°C for 2 h (10°C.min""' ramp rate) under
10 cm®min"" flowing hydrogen. 2 g batches of a mechanically compacted fumed
silica (SiO,, 200 m°g ™" S5505 Sigma) were likewise wetted with 16 cm® aqueous
ammonium tetrachloroplatinate (II) or tetraammine platinum (II) nitrate solutions
(precursor concentrations adjusted to achieve nominal Pt loadings spanning 0.05 to 2
wt%), and the resulting slurries dried, calcined and reduced as above.

Characterization. Nitrogen porosimetry was undertaken on a Quantachrome Nova
4000e porosimeter and analysed with NovaWin software version 11. Samples were
degassed at 120°C for 2 h prior to analysis by nitrogen adsorption at —196°C.
Adsorption/desorption isotherms were recorded for all parent and Pt-impregnated
silicas. BET surface areas were calculated over the relative pressure range 0.01-0.2.
Pore diameters and volumes were calculated by applying the BJH method to
desorption isotherms for relative pressures >0.35. Low and wide angle XRD patterns
were recorded on a PANalytical X’pertPro diffractometer fitted with an X’celerator

detector and Cu K,, (1.54 A) source, calibrated against a silicon standard. Low angle
patterns were recorded from 26 = 0.3-8° with a step size of 0.01°, and wide angle
patterns from 26 = 20-90° with a step size of 0.02°. The Scherrer equation was used to
calculate volume-averaged Pt crystallite diameters from broadening of the associated
metal reflections. In situ XRD was conducted in an Anton Parr XRK900 cell on a Bruker

D8 diffractometer employing a Cu K, (1.54 A) source.

XPS was performed on a Kratos Axis HSi X-ray photoelectron spectrometer fitted
with a charge neutralizer and magnetic focusing lens, employing Al K, monochro-
mated radiation (1486.7 eV). Spectral fitting was performed using CasaXPS version
2.3.14. Binding energies were corrected to the C 1s peak at 284.6 eV and surface
atomic compositions calculated via correction for the appropriate instrument res-
ponse factors. Pt 4f XP spectra were fitted using a common Gaussian-Lorentzian
asymmetric lineshape. Errors were estimated by varying the Shirley background-
subtraction procedure and re-calculating component fits. Pt dispersions were mea-
sured via CO pulse chemisorption on a Quantachrome ChemBET 3000 system.
Samples were outgassed at 150°C under flowing He (20 ml min™") for 1 h, prior to
reduction at 150°C under flowing hydrogen (10 ml min™"') for 1 h before room
temperature analysis; this reduction protocol is milder than that employed during Pt
impregnation, and does not induce particle sintering. A CO:Ptyc. Stoichiometry of
0.68 was assumed, since the formation of a fully saturated monolayer is energetically
unfavorable under the measurement conditions employed. DRIFTS measurements
were conducted employing a Thermo Scientific Nicolet environmental cell and Smart
Collector accessory on a Thermo Scientific Nicolet iS50 FT-IR Spectrometer with
MCT detector. Samples were diluted in KBr (1:9) and evacuated at 200°C for 2 h prior
to in vacuo spectral acquisition. Attenuated total reflectance IR (ATR-IR) measure-
ments were conducted employing a Pike 20 bounce HATR environmental flow cell
and Thermo Scientific Avatar spectrometer with MCT detector and ZnSe ATR
crystal. Catalyst films were deposited from aqueous slurries onto the ATR crystal and
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dried overnight at 40°C in vacuo. A 0.84 M CinnALD in anisole solution was sub-
sequently flowed over the dried catalyst film at 1 ml.min~', and IR spectra recorded as
a function of temperature during sample heating at 3°C.min"" from room temper-
ature to 90°C. A liquid-phase vibrational spectrum of CinnALD was calculated for the
geometry optimized structure using density functional theory as implemented
through Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004) using a 6-311 Gdp basis
set and the B3LYP functional in order to aid and visualize spectral assignments.
SEM images were recorded on a Carl Zeiss Evo-40 SEM operating at 10 kV.
Samples were supported on carbon tape. Metal loadings were determined using EDX
analysis at 25 kV with a maximum current of 25 nA and working distance of 9 mm.
High resolution (S)TEM images were recorded on an FEI Tecnai F20 field emission
gun TEM operated at 200 kV equipped with a Gatan Orius SC600A CCD camera.
Samples were prepared for TEM by dispersion in ethanol and drop-casting onto a
copper grid coated with a continuous carbon support film (Agar Scientific Ltd).
Images were analyzed in ImageJ 1.41. The Gaussian width of Pt nanoparticle size
distributions from which mean values are reported in Figures 1-2 was only
~%0.5 nm, which does not represent a significant variance considering the overall
size range spanned of 1.9-16 nm nor interferes with the size dependent selectivity and
activity reported in this work.

Cinnamaldehyde hydrogenation. Catalyst testing was performed using a Radleys
Starfish parallel reactor on a 10 cm? scale at 90°C. 100 mg of catalyst were added to
reaction mixtures containing 8.4 mmol of aldehyde substrate in 10 cm’ anisole
solvent, and 0.1 cm’ internal standard (mesitylene) at 90°C under 700 rpm stirring
and bubbling H, (1 bar, 5 cm’.min~") which ensured the absence of external mass-
transport limitations. Reactivity of the 2 wt% Pt/SBA-15 catalyst was also
independent of silica particle size, confirming facile in-pore mass-transport (Table
S4). The absolute Pt content varied between 0.26 pumol (0.05 wt% catalysts) and
10.8 pmol (for the highest loading 2.10 wt%), corresponding to substrate:catalyst
ratios ranging from 3.28 X 10 (0.05 wt%) down to 6.92 X 10 (2.1 wt%). Reactions
were sampled periodically for kinetic profiling by off-line gas chromatography using a
Varian 3800GC with 8400 autosampler fitted with a VF-5ms Factor Four column
(30 m X 0.25 mm X 0.25 um). For CinnALD, catalytic hydrogenation of the likely
reaction intermediates 3-phenyl propan-1-ol, 3-phenyl propionaldehyde, 3-phenyl
propanoic acid, cinnamic acid and CinnOH was also measured for the lowest and
highest Pt loadings (0.05 and 2.1 wt%) on both silicas under identical conditions to
those employed for CinnALD hydrogenation. The role of hydrogen pressure was
investigated keeping other reaction conditions (temperature, internal standard and
substrate:catalyst ratio) identical, within a stirred Parr 5513 100 ml stainless steel
autoclave between 1 and 10 bar H, pressure; activity and selectivity were assessed
through periodic sampling via a dip-tube. Control experiments verified negligible
substrate conversion in the absence of either H, or platinum catalyst, while hot
filtration tests evidenced no detectable metal leaching, confirming the heterogeneous
nature of the observed reactions. Quoted activities and selectivities are the mean of
duplicate or triplicate reactions with errors =2%; mass balances >95% in all cases.
Conversion, selectivity, yield and TOF were defined as below:

% Conversion = {([Aldehyde,_(] — [Aldehyde,_])/[Aldehyde,_]} x 100
% Selectivity = {[Product 1;_]/([Product 1;_4]+ [Product 2,_]+ ....)} X 100
% Yield ={% Conversion x % Selectivity} /100

TOF = mmolscinnarp converted.h ™ /mmols surface
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