1,841 research outputs found

    Dynamical typicality for initial states with a preset measurement statistics of several commuting observables

    Full text link
    We consider all pure or mixed states of a quantum many-body system which exhibit the same, arbitrary but fixed measurement outcome statistics for several commuting observables. Taking those states as initial conditions, which are then propagated by the pertinent Schr\"odinger or von Neumann equation up to some later time point, and invoking a few additional, fairly weak and realistic assumptions, we show that most of them still entail very similar expectation values for any given observable. This so-called dynamical typicality property thus corroborates the widespread observation that a few macroscopic features are sufficient to ensure the reproducibility of experimental measurements despite many unknown and uncontrollable microscopic details of the system. We also discuss and exemplify the usefulness of our general analytical result as a powerful numerical tool

    Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream

    Get PDF
    1. Primary production and respiration in streams, collectively referred to as stream ecosystem metabolism, are fundamental processes that determine trophic structure, biomass and nutrient cycling. Few studies have used high‐frequency measurements of gross primary production (GPP) and ecosystem respiration (ER) over extended periods to characterise the factors that control stream ecosystem metabolism at hourly, daily, seasonal and annual scales. 2. We measured ecosystem metabolism at 5‐min intervals for 23 months in Shepherd Creek, a small suburban stream in Cincinnati, Ohio (U.S.A.). 3. Daily GPP was best predicted by a model containing light and its synergistic interaction with water temperature. Water temperature alone was not significantly related to daily GPP, rather high temperatures enhanced the capacity of autotrophs to use available light. 4. The relationship between GPP and light was further explored using photosynthesis–irradiance curves (P–I curves). Light saturation of GPP was evident throughout the winter and spring and the P–I curve frequently exhibited strong counterclockwise hysteresis. Hysteresis occurred when water temperatures were greater in the afternoon than in the morning, although light was similar, further suggesting that light availability interacts synergistically with water temperature. 5. Storm flows strongly depressed GPP in the spring while desiccation arrested aquatic GPP and ER in late summer and autumn. 6. Ecosystem respiration was best predicted by GPP, water temperature and the rate of water exchange between the surface channel and transient storage zones. We estimate that c. 70% of newly fixed carbon was immediately respired by autotrophs and closely associated heterotrophs. 7. Interannual, seasonal, daily and hourly variability in ecosystem metabolism was attributable to a combination of light availability, water temperature, storm flow dynamics and desiccation. Human activities affect all these factors in urban and suburban streams, suggesting stream ecosystem processes are likely to respond in complex ways to changing land use and climate

    Long-Term Behaviour of ETFE-Films

    Get PDF

    Urban Stream Burial Increases Watershed-Scale Nitrate Export

    Get PDF
    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention

    Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention

    Get PDF
    Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3 −) by eliminating primary production, reducing respiration rates and organic matter availability, and increasing specific discharge. We tested these predictions by measuring whole-stream NO3 − removal rates using 15NO3 − isotope tracer releases in paired buried and open reaches in three streams in Cincinnati, Ohio (USA) during four seasons. Nitrate uptake lengths were 29 times greater in buried than open reaches, indicating that buried reaches were less effective at retaining NO3 − than open reaches. Burial suppressed NO3 − retention through a combination of hydrological and biological processes. The channel shape of two of the buried reaches increased specific discharge which enhanced NO3 − transport from the channel, highlighting the relationship between urban infrastructure and ecosystem function. Uptake lengths in the buried reaches were further lengthened by low stream biological NO3 − demand, as indicated by NO3 − uptake velocities 17-fold lower than that of the open reaches. We also observed differences in the periphyton enzyme activity between reaches, indicating that the effects of burial cascade from the microbial to the ecosystem scale. Our results suggest that stream restoration practices involving “daylighting” buried streams have the potential to increase N retention. Further work is needed to elucidate the impacts of stream burial on ecosystem functions at the larger stream network scale

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore