21 research outputs found

    Involvement of the Modifier Gene of a Human Mendelian Disorder in a Negative Selection Process

    Get PDF
    BACKGROUND:Identification of modifier genes and characterization of their effects represent major challenges in human genetics. SAA1 is one of the few modifiers identified in humans: this gene influences the risk of renal amyloidosis (RA) in patients with familial Mediterranean fever (FMF), a Mendelian autoinflammatory disorder associated with mutations in MEFV. Indeed, the SAA1 alpha homozygous genotype and the p.Met694Val homozygous genotype at the MEFV locus are two main risk factors for RA. METHODOLOGY/PRINCIPAL FINDINGS:HERE, WE INVESTIGATED ARMENIAN FMF PATIENTS AND CONTROLS FROM TWO NEIGHBORING COUNTRIES: Armenia, where RA is frequent (24%), and Karabakh, where RA is rare (2.5%). Sequencing of MEFV revealed similar frequencies of p.Met694Val homozygotes in the two groups of patients. However, a major deficit of SAA1 alpha homozygotes was found among Karabakhian patients (4%) as compared to Armenian patients (24%) (p = 5.10(-5)). Most importantly, we observed deviations from Hardy-Weinberg equilibrium (HWE) in the two groups of patients, and unexpectedly, in opposite directions, whereas, in the two control populations, genotype distributions at this locus were similar and complied with (HWE). CONCLUSIONS/SIGNIFICANCE:The excess of SAA1alpha homozygotes among Armenian patients could be explained by the recruitment of patients with severe phenotypes. In contrast, a population-based study revealed that the deficit of alpha/alpha among Karabakhian patients would result from a negative selection against carriers of this genotype. This study, which provides new insights into the role of SAA1 in the pathophysiology of FMF, represents the first example of deviations from HWE and selection involving the modifier gene of a Mendelian disorder

    Protein Isoaspartate Methyltransferase Prevents Apoptosis Induced by Oxidative Stress in Endothelial Cells: Role of Bcl-Xl Deamidation and Methylation

    Get PDF
    BACKGROUND:Natural proteins undergo in vivo spontaneous post-biosynthetic deamidation of specific asparagine residues with isoaspartyl formation. Deamidated-isomerized molecules are both structurally and functionally altered. The enzyme isoaspartyl protein carboxyl-O-methyltransferase (PCMT; EC 2.1.1.77) has peculiar substrate specificity towards these deamidated proteins. It catalyzes methyl esterification of the free alpha-carboxyl group at the isoaspartyl site, thus initiating the repair of these abnormal proteins through the conversion of the isopeptide bond into a normal alpha-peptide bond. Deamidation occurs slowly during cellular and molecular aging, being accelerated by physical-chemical stresses brought to the living cells. Previous evidence supports a role of protein deamidation in the acquisition of susceptibility to apoptosis. Aim of this work was to shed a light on the role of PCMT in apoptosis clarifying the relevant mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS:Endothelial cells transiently transfected with various constructs of PCMT, i.e. overexpressing wild type PCMT or negative dominants, were used to investigate the role of protein methylation during apoptosis induced by oxidative stress (H(2)O(2); 0.1-0.5 mM range). Results show that A) Cells overexpressing "wild type" human PCMT were resistant to apoptosis, whereas overexpression of antisense PCMT induces high sensitivity to apoptosis even at low H(2)O(2) concentrations. B) PCMT protective effect is specifically due to its methyltransferase activity rather than to any other non-enzymatic interactions. In fact negative dominants, overexpressing PCMT mutants devoid of catalytic activity do not prevent apoptosis. C) Cells transfected with antisense PCMT, or overexpressing a PCMT mutant, accumulate isoaspartyl-containing damaged proteins upon H(2)O(2) treatment. Proteomics allowed the identification of proteins, which are both PCMT substrates and apoptosis effectors, whose deamidation occurs under oxidative stress conditions leading to programmed cell death. These proteins, including Hsp70, Hsp90, actin, and Bcl-xL, are recognized and methylated by PCMT, according to the general repair mechanism of this methyltransferase. CONCLUSION/SIGNIFICANCE:Apoptosis can be modulated by "on/off" switch partitioning the amount of specific protein effectors, which are either in their active (native) or inactive (deamidated) molecular forms. Deamidated proteins can also be functionally restored through methylation. Bcl-xL provides a case for the role of PCMT in the maintenance of functional stability of this antiapoptotic protein

    Social Transmission of Avoidance Behavior under Situational Change in Learned and Unlearned Rats

    Get PDF
    BACKGROUND: Rats receive information from other conspecifics by observation or other types of social interaction. Such social interaction may contribute to the effective adaptation to changes of environment such as situational switching. Learning to avoid dangerous places or objects rapidly occurs with even a single conditioning session, and the conditioned memory tends to be sustained over long periods. The avoidance is important for adaptation, but the details of the conditions under which the social transmission of avoidance is formed are unknown. We demonstrate that the previous experience of avoidance learning is important for the formation of behaviors for social transmission of avoidance and that the experienced rats adapt to a change of situation determined by the presence or absence of aversive stimuli. We systematically investigated social influence on avoidance behavior using a passive avoidance test in a light/dark two-compartment apparatus. METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into two groups, one receiving foot shocks and another with no aversive experience in a dark compartment. Experienced and inexperienced rats were further divided into subjects and partners. In Experiment 1, each subject experienced (1) interaction with an experienced partner, (2) interaction with an inexperienced partner, or (3) no interaction. In Experiment 2, each subject experienced interaction with a partner that received a shock. The entering latency to a light compartment was measured. The avoidance behavior of experienced rats was inhibited by interaction with inexperienced or experienced partners in a safely-changed situation. The avoidance of experienced rats was reinstated in a dangerously-changed situation by interaction with shocked rats. In contrast, the inexperienced rats were not affected by any social circumstances. CONCLUSIONS/SIGNIFICANCE: These results suggest that transmitted information among rats can be updated under a situational change and that the previous experience is crucial for social enhancement and inhibition of avoidance behavior in rats

    Immune Modulating Peptides for the Treatment and Suppression of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a neurodegenerative disease in which the immune system recognizes proteins of the myelin sheath as antigenic, thus initiating an inflammatory reaction in the central nervous system. This leads to demyelination of the axons, breakdown of the blood-brain barrier, and lesion formation. Current therapies for the treatment of MS are generally non-specific and weaken the global immune system, thus making the individual susceptible to opportunistic infections. Antigenic peptides and their derivatives are becoming more prevalent for investigation as therapeutic agents for MS because they possess immune-specific characteristics. In addition, other peptides that target vital components of the inflammatory immune response have also been developed. Therefore, the objectives of this review are to (a) summarize the immunological basis for the development of MS, (b) discuss specific and non-specific peptides tested in EAE and in humans, and (c) briefly address some problems and potential solutions with these novel therapies

    Aplikasi Pemilihan Fakultas di Universitas Klabat Bagi Calon Mahasiswa Menggunakan Metode DSS Fuzzy

    Full text link
    Memilih fakultas sebagai kelanjutan dari para peserta didik di tingkat SMA yang telah tamat, tidaklah semudah yang diharapkan hal ini disebabkan untuk mencocok minat yang sesuai dengan kemampuan akademik yang dimiliki dari setiap peserta didik. Berdasarkan hal tersebut maka, dirasa perlu untuk memberikan arahan secara pasti kepada peserta didik kelas XII tersebut untuk dapat memilih fakultas yang akan diambil. Untuk itu pada penelitian ini peneliti menyelesaikan masalah tersebut dengan melakukan analisis kemampuan dari peserta didik kelas XII tersebut untuk mendapatkan minat yang sesuai berdasarkan prestasi akademik selama 3 tahun (6 semester). Nilai yang diperoleh tersebut diolah dengan menggunakan analisis Decision Support System (DSS) yang diterapkan pada metode Fuzzy pada perhitungan Simple Additive Weight (SAW) untuk mengetahui secara kuantitatif kemampuan dari peserta didik tersebut, dengan menarik bobot kemampuan akademik yang dimiliki peserta didik tersebut untuk mendapatkan fakultas yang sesuai dengan karakteristik bidang ilmu yang menjadi kekuatannya. Dari sinilah sistem akan menyarankan minat kepada peserta didik tersebut untuk mendapatkan fakultas yang sesuai dengan kemampuan akademik yang dimilikinya. Untuk memastikan bahwa aplikasi peminatan yang diperoleh pada aplikasi dapat dibangun, maka digunakan rekayasa perangkat lunak menggunakan metode Spiral. Hasil penelitian menunjukan bahwa sistem keputusan yang dibangun dapat memberikan saran dalam memilih fakultas berdasarkan kemampuan akademis yang dimiliki calon mahasiswa yang bersumber dari nilai akademik SMA semester 1 – 6 dengan menggunakan perhitungan SAW yang diimplementasikan kedalam website
    corecore