59 research outputs found

    The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay

    Get PDF
    The article describes the main achievements of the NUMEN project togetherwith an updated and detailed overview of the related R&D activities andtheoretical developments. NUMEN proposes an innovative technique to access thenuclear matrix elements entering the expression of the lifetime of the doublebeta decay by cross section measurements of heavy-ion induced Double ChargeExchange (DCE) reactions. Despite the two processes, namely neutrinoless doublebeta decay and DCE reactions, are triggered by the weak and strong interactionrespectively, important analogies are suggested. The basic point is thecoincidence of the initial and final state many-body wave-functions in the twotypes of processes and the formal similarity of the transition operators. Firstexperimental results obtained at the INFN-LNS laboratory for the40Ca(18O,18Ne)40Ar reaction at 270 MeV, give encouraging indication on thecapability of the proposed technique to access relevant quantitativeinformation. The two major aspects for this project are the K800Superconducting Cyclotron and MAGNEX spectrometer. The former is used for theacceleration of the required high resolution and low emittance heavy ion beamsand the latter is the large acceptance magnetic spectrometer for the detectionof the ejectiles. The use of the high-order trajectory reconstructiontechnique, implemented in MAGNEX, allows to reach the experimental resolutionand sensitivity required for the accurate measurement of the DCE cross sectionsat forward angles. However, the tiny values of such cross sections and theresolution requirements demand beam intensities much larger than manageablewith the present facility. The on-going upgrade of the INFN-LNS facilities inthis perspective is part of the NUMEN project and will be discussed in thearticle

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa

    Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration

    Get PDF
    KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV–PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232–3386 m seawater depth is obtained

    The Transformation from Traditional Nonprofit Organizations to Social Enterprises: An Institutional Entrepreneurship Perspective

    Get PDF
    The development of commercial revenue streams allows traditional nonprofit organizations to increase financial certainty in response to the reduction of traditional funding sources and increased competition. In order to capture commercial revenue-generating opportunities, traditional nonprofit organizations need to deliberately transform themselves into social enterprises. Through the theoretical lens of institutional entrepreneurship, we explore the institutional work that supports this transformation by analyzing field interviews with 64 institutional entrepreneurs from UK-based social enterprises. We find that the route to incorporate commercial processes and convert traditional nonprofit organizations into social enterprises requires six distinct kinds of institutional work at three different domains; these are—“engaging commercial revenue strategies”, “creating a professionalized organizational form”, and “legitimating a socio-commercial business model”. In elaborating on social entrepreneurship research and practice, we offer a comprehensive framework delineating the key practices contributing to the transformation from traditional nonprofit organizations to social enterprises. This extends our understanding of the ex-ante strategy of incorporating commercial processes within social organizations. Furthermore, the identification of these practices also offers an important tool for scholars in this field to examine the connection (or disconnection) of each practice with different ethical concerns of social entrepreneurship in greater depth.British Academ

    Unpacking Variation in Hybrid Organizational Forms: Changing Models of Social Enterprise Among Nonprofits, 2000-2013

    No full text
    To remain financially viable and continue to accomplish their social missions, nonprofits are increasingly adopting a hybrid organizational form that combines commercial and social welfare logics. While studies recognize that individual organizations vary in how they incorporate and manage hybridity, variation at the level of the organizational form remains poorly understood. Existing studies tend to treat forms as either hybrid or not, limiting our understanding of the different ways a hybrid form may combine multiple logics and how such combinations evolve over time. Analyzing 14 years of data from Canadian nonprofits seeking funding for social enterprise activities, we identify two novel dimensions along which a hybrid form may vary—the locus of integration and the scope of logics. We further find that as the commercial logic became more widespread within the nonprofit sector, variants of the hybrid form shifted from primarily emphasizing the commercial logic to more equally emphasizing both the commercial and social welfare logics and integrating the two logics in multiple ways. Drawing on these findings, we contribute a multi-dimensional conception of hybrid forms and theorize how form-level variation in hybridity can arise from organization-level cognitive challenges that actors face when combining seemingly incompatible logics. We then build on this theorizing to offer an alternative perspective on commercialization of the nonprofit sector as a contextually dependent rather than universal trend

    Genetic consequences of multigenerational and landscape colonisation bottlenecks for a neotropical forest pioneer tree, Vochysia ferruginea

    Get PDF
    Deforestation and abandonment of neotropical agricultural land has led to rapid exploitation by pioneer species. As recolonised populations may be founded by a limited number of individuals, there is significant potential for genetic bottlenecks. Previous studies of pioneer tree dynamics have failed to consider population density interactions (by sampling populations with different densities)and the multigenerational consequences of recolonisation. In this paper we examine the genetic outcomes of a clearance / recolonisation regime for a Costa Rican long-lived pioneer species, Vochysia ferruginea, at a series of sites with different densities and across multi-generational cohorts (old growth forest,secondary forest and seedlings) using variation for amplified fragment length polymorphism (AFLPs) and single sequence repeats (SSRs, microsatellites). A clearance/recolonisation phase was found to significantly increase fine-scale genetic structuring (average intensity of spatial genetic structure, Sp [SSR] = 0.0358) compared to old growth forest (Sp = 0.0126), and significantly reduces genetic diversity (Shannon’s index [AFLP] = 0.202 and 0.271–0.355 for other forest histories following density correction), which compounds over generations (e.g. at Tirimbina: old growth forest, allelic richness, RT [SSR] = 8.86; secondary forest RT = 7.95; seedlings RT = 4.76). Spatial structuring of closely related individuals suggests that V. ferruginea colonises sites via early invaders, which establish patches with half sib relationship. The variability observed between cohorts for genetic differentiation and inbreeding coefficients suggests that the presence of remnant trees can have an important impact on the genetic make up of recolonised populations. One main concern from these results is that if secondary forest blocks harbour reduced genetic diversity and persist in the landscape, then species like V. ferruginea may be forced into a downward spiral of diversity loss if old growth remnants, which harbour higher diversity, are cleared and secondary blocks are used as reforestation sources
    corecore