84 research outputs found

    Genome-wide association study of nocturnal blood pressure dipping in hypertensive patients

    Get PDF
    Abstract Background Reduced nocturnal fall (non-dipping) of blood pressure (BP) is a predictor of cardiovascular target organ damage. No genome-wide association studies (GWAS) on BP dipping have been previously reported. Methods To study genetic variation affecting BP dipping, we conducted a GWAS in Genetics of Drug Responsiveness in Essential Hypertension (GENRES) cohort (n = 204) using the mean night-to-day BP ratio from up to four ambulatory BP recordings conducted on placebo. Associations with P < 1 × 10− 5 were further tested in two independent cohorts: Haemodynamics in Primary and Secondary Hypertension (DYNAMIC) (n = 183) and Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic Syndrome (DILGOM) (n = 180). We also tested the genome-wide significant single nucleotide polymorphism (SNP) for association with left ventricular hypertrophy in GENRES. Results In GENRES GWAS, rs4905794 near BCL11B achieved genome-wide significance (β = − 4.8%, P = 9.6 × 10− 9 for systolic and β = − 4.3%, P = 2.2 × 10− 6 for diastolic night-to-day BP ratio). Seven additional SNPs in five loci had P values < 1 × 10− 5. The association of rs4905794 did not significantly replicate, even though in DYNAMIC the effect was in the same direction (β = − 0.8%, P = 0.4 for systolic and β = − 1.6%, P = 0.13 for diastolic night-to-day BP ratio). In GENRES, the associations remained significant even during administration of four different antihypertensive drugs. In separate analysis in GENRES, rs4905794 was associated with echocardiographic left ventricular mass (β = − 7.6 g/m2, P = 0.02). Conclusions rs4905794 near BCL11B showed evidence for association with nocturnal BP dipping. It also associated with left ventricular mass in GENRES. Combined with earlier data, our results provide support to the idea that BCL11B could play a role in cardiovascular pathophysiology

    Genome-wide association study of nocturnal blood pressure dipping in hypertensive patients

    Get PDF
    Background: Reduced nocturnal fall (non-dipping) of blood pressure (BP) is a predictor of cardiovascular target organ damage. No genome-wide association studies (GWAS) on BP dipping have been previously reported.Methods: To study genetic variation affecting BP dipping, we conducted a GWAS in Genetics of Drug Responsiveness in Essential Hypertension (GENRES) cohort (n = 204) using the mean night-to-day BP ratio from up to four ambulatory BP recordings conducted on placebo. Associations with P< 1 x 10(-5) were further tested in two independent cohorts: Haemodynamics in Primary and Secondary Hypertension (DYNAMIC) (n = 183) and Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic Syndrome (DILGOM) (n = 180). We also tested the genome-wide significant single nucleotide polymorphism (SNP) for association with left ventricular hypertrophy in GENRES.Results: In GENRES GWAS, rs4905794 near BCL11B achieved genome-wide significance (beta = - 4.8%, P = 9.6 x 10(-9) for systolic and beta = - 4.3%, P = 2.2 x 10(-6) for diastolic night-to-day BP ratio). Seven additional SNPs in five loci had P values < 1 x 10(-5). The association of rs4905794 did not significantly replicate, even though in DYNAMIC the effect was in the same direction (beta = - 0.8%, P = 0.4 for systolic and beta = - 1.6%, P = 0.13 for diastolic night-to-day BP ratio). In GENRES, the associations remained significant even during administration of four different antihypertensive drugs. In separate analysis in GENRES, rs4905794 was associated with echocardiographic left ventricular mass (beta = -7.6 g/m(2), P = 0.02).Conclusions: rs4905794 near BCL11B showed evidence for association with nocturnal BP dipping. It also associated with left ventricular mass in GENRES. Combined with earlier data, our results provide support to the idea that BCL11B could play a role in cardiovascular pathophysiology

    Obesity Modifies the Performance of Fibrosis Biomarkers in Nonalcoholic Fatty Liver Disease

    Get PDF
    Context: Guidelines recommend blood-based fibrosis biomarkers to identify advanced nonalcoholic fatty liver disease (NAFLD), which is particularly prevalent in patients with obesity. Objective: To study whether the degree of obesity affects the performance of liver fibrosis biomarkers in NAFLD. Design: Cross-sectional cohort study comparing simple fibrosis scores [Fibrosis-4 Index (FIB-4); NAFLD Fibrosis Score (NFS); aspartate aminotransferase to platelet ratio index; BARD (body mass index, aspartate-to-alanine aminotransferase ratio, diabetes); Hepamet Fibrosis Score (HFS)] and newer scores incorporating neo-epitope biomarkers PRO-C3 (ADAPT, FIBC3) or cytokeratin 18 (MACK-3). Setting: Tertiary referral center. Patients: We recruited overweight/obese patients from endocrinology (n = 307) and hepatology (n = 71) clinics undergoing a liver biopsy [median body mass index (BMI) 40.3 (interquartile range 36.0-44.7) kg/m(2)]. Additionally, we studied 859 less obese patients with biopsy-proven NAFLD to derive BMI-adjusted cutoffs for NFS. Main Outcome Measures: Biomarker area under the receiver operating characteristic (AUROC), sensitivity, specificity, and predictive values to identify histological stage >= F3 fibrosis or nonalcoholic steatohepatitis with >= F2 fibrosis [fibrotic nonalcoholic steatohepatitis (NASH)]. Results: The scores with an AUROC >= 0.85 to identify >= F3 fibrosis were ADAPT, FIB-4, FIBC3, and HFS. For fibrotic NASH, the best predictors were MACK-3 and ADAPT. The specificities of NFS, BARD, and FIBC3 deteriorated as a function of BMI. We derived and validated new cutoffs for NFS to rule in/out >= F3 fibrosis in groups with BM Is = 40.0 kg/m(2). This optimized its performance at all levels of BMI. Sequentially combining FIB-4 with ADAPT or FIBC3 increased specificity to diagnose >= F3 fibrosis. Conclusions: In obese patients, the best-performing fibrosis biomarkers are ADAPT and the inexpensive FIB-4, which are unaffected by BMI. The widely used NFS loses specificity in obese individuals, which may be corrected with BMI-adjusted cutoffs.Peer reviewe

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations : the cohorts for heart and aging research in genomic epidemiology

    Get PDF
    Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether common single-nucleotide polymorphisms (SNPs) modified the association between thiazide use and QT or its component parts (QRS interval, JT interval) by performing ancestry-specific, transethnic and cross-phenotype genome-wide analyses of European (66%), African American (15%) and Hispanic (19%) populations (N = 78 199), leveraging longitudinal data, incorporating corrected standard errors to account for underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. Although no loci achieved genome-wide significance (P <5 x 10(-8)), we found suggestive evidence (P <5 x 10(-6)) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci (for example, NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations demonstrating modest power to detect interaction effects at genome-wide significant levels indicate that larger studies and innovative statistical methods are warranted in future efforts evaluating thiazide-SNP interactions.Peer reviewe

    Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance

    Get PDF
    Background &amp; Aims: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. Methods: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2–4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5–8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2–4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. Lay summary: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy

    Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: An individual patient data meta-analysis

    Get PDF

    Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: An individual patient data meta-analysis

    Get PDF
    Objective Liver biopsy is still needed for fibrosis staging in many patients with non-alcoholic fatty liver disease. The aims of this study were to evaluate the individual diagnostic performance of liver stiffness measurement by vibration controlled transient elastography (LSM-VCTE), Fibrosis-4 Index (FIB-4) and NAFLD (non-alcoholic fatty liver disease) Fibrosis Score (NFS) and to derive diagnostic strategies that could reduce the need for liver biopsies. Design Individual patient data meta-analysis of studies evaluating LSM-VCTE against liver histology was conducted. FIB-4 and NFS were computed where possible. Sensitivity, specificity and area under the receiver operating curve (AUROC) were calculated. Biomarkers were assessed individually and in sequential combinations. Results Data were included from 37 primary studies (n=5735; 45% women; median age: 54 years; median body mass index: 30 kg/m2; 33% had type 2 diabetes; 30% had advanced fibrosis). AUROCs of individual LSM-VCTE, FIB-4 and NFS for advanced fibrosis were 0.85, 0.76 and 0.73. Sequential combination of FIB-4 cut-offs (&lt;1.3; ≥2.67) followed by LSM-VCTE cut-offs (&lt;8.0; ≥10.0 kPa) to rule-in or rule-out advanced fibrosis had sensitivity and specificity (95% CI) of 66% (63-68) and 86% (84-87) with 33% needing a biopsy to establish a final diagnosis. FIB-4 cut-offs (&lt;1.3; ≥3.48) followed by LSM cut-offs (&lt;8.0; ≥20.0 kPa) to rule out advanced fibrosis or rule in cirrhosis had a sensitivity of 38% (37-39) and specificity of 90% (89-91) with 19% needing biopsy. Conclusion Sequential combinations of markers with a lower cut-off to rule-out advanced fibrosis and a higher cut-off to rule-in cirrhosis can reduce the need for liver biopsies
    corecore