102 research outputs found

    Female-Biased Dispersal and Gene Flow in a Behaviorally Monogamous Mammal, the Large Treeshrew (Tupaia tana)

    Get PDF
    Background: Female-biased dispersal (FBD) is predicted to occur in monogamous species due to local resource competition among females, but evidence for this association in mammals is scarce. The predicted relationship between FBD and monogamy may also be too simplistic, given that many pair-living mammals exhibit substantial extra-pair paternity. Methodology/Principal Findings: I examined whether dispersal and gene flow are female-biased in the large treeshrew (Tupaia tana) in Borneo, a behaviorally monogamous species with a genetic mating system characterized by high rates (50%) of extra-pair paternity. Genetic analyses provided evidence of FBD in this species. As predicted for FBD, I found lower mean values for the corrected assignment index for adult females than for males using seven microsatellite loci, indicating that female individuals were more likely to be immigrants. Adult female pairs were also less related than adult male pairs. Furthermore, comparison of Bayesian coalescent-based estimates of migration rates using maternally and bi-parentally inherited genetic markers suggested that gene flow is female-biased in T. tana. The effective number of migrants between populations estimated from mitochondrial DNA sequence was three times higher than the number estimated using autosomal microsatellites. Conclusions/Significance: These results provide the first evidence of FBD in a behaviorally monogamous species without mating fidelity. I argue that competition among females for feeding territories creates a sexual asymmetry in the costs an

    Dispersal Ability Predicts Spatial Genetic Structure in Native Mammals Persisting across an Urbanization Gradient

    Get PDF
    As the rate of urbanization continues to increase globally, a growing body of research is emerging that investigates how urbanization shapes the movement—and consequent gene flow—of species in cities. Of particular interest are native species that persist in cities, either as small relict populations or as larger populations of synanthropic species that thrive alongside humans in new urban environments. In this study, we used genomic sequence data (SNPs) and spatially explicit individual‐based analyses to directly compare the genetic structure and patterns of gene flow in two small mammals with different dispersal abilities that occupy the same urbanized landscape to evaluate how mobility impacts genetic connectivity. We collected 215 white‐footed mice (Peromyscus leucopus) and 380 big brown bats (Eptesicus fuscus) across an urban‐to‐rural gradient within the Providence, Rhode Island (U.S.A.) metropolitan area (population =1,600,000 people). We found that mice and bats exhibit clear differences in their spatial genetic structure that are consistent with their dispersal abilities, with urbanization having a stronger effect on Peromyscus mice. There were sharp breaks in the genetic structure of mice within the Providence urban core, as well as reduced rates of migration and an increase in inbreeding with more urbanization. In contrast, bats showed very weak genetic structuring across the entire study area, suggesting a near‐panmictic gene pool likely due to the ability to disperse by flight. Genetic diversity remained stable for both species across the study region. Mice also exhibited a stronger reduction in gene flow between island and mainland populations than bats. This study represents one of the first to directly compare multiple species within the same urban‐to‐rural landscape gradient, an important gap to fill for urban ecology and evolution. Moreover, here we document the impacts of dispersal capacity on connectivity for native species that have persisted as the urban landscape matrix expands

    Global population divergence and admixture of the brown rat (Rattus norvegicus)

    Get PDF
    Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes

    Male-Mediated Gene Flow in Patrilocal Primates

    Get PDF
    BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos

    Universal DNA methylation age across mammalian tissues

    Get PDF
    Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.Publisher PDFPeer reviewe

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore