552 research outputs found

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations

    Get PDF
    This paper introduces a novel activity dataset which exhibits real-life and diverse scenarios of complex, temporally-extended human activities and actions. The dataset presents a set of videos of actors performing everyday activities in a natural and unscripted manner. The dataset was recorded using a static Kinect 2 sensor which is commonly used on many robotic platforms. The dataset comprises of RGB-D images, point cloud data, automatically generated skeleton tracks in addition to crowdsourced annotations. Furthermore, we also describe the methodology used to acquire annotations through crowdsourcing. Finally some activity recognition benchmarks are presented using current state-of-the-art techniques. We believe that this dataset is particularly suitable as a testbed for activity recognition research but it can also be applicable for other common tasks in robotics/computer vision research such as object detection and human skeleton tracking

    Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Full text link
    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction is studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilised by synaptic noise and well separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice

    Full text link
    We discuss analytical approximation schemes for the dynamics of diluted spin models. The original dynamics of the complete set of degrees of freedom is replaced by a hierarchy of equations including an increasing number of global observables, which can be closed approximately at different levels of the hierarchy. We illustrate this method on the simple example of the Ising ferromagnet on a Bethe lattice, investigating the first three possible closures, which are all exact in the long time limit, and which yield more and more accurate predictions for the finite-time behavior. We also investigate the critical region around the phase transition, and the behavior of two-time correlation functions. We finally underline the close relationship between this approach and the dynamical replica theory under the assumption of replica symmetry.Comment: 21 pages, 5 figure

    Life-history strategy determines constraints on immune function

    Get PDF
    Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work shows that in addition to disease resistance, the costs of immunity vary between individuals with different life-history strategies. We discuss the implications of these findings for understanding how organisms invest optimally in immunity in the light of context-dependent constraints

    Chaos in neural networks with a nonmonotonic transfer function

    Full text link
    Time evolution of diluted neural networks with a nonmonotonic transfer function is analitically described by flow equations for macroscopic variables. The macroscopic dynamics shows a rich variety of behaviours: fixed-point, periodicity and chaos. We examine in detail the structure of the strange attractor and in particular we study the main features of the stable and unstable manifolds, the hyperbolicity of the attractor and the existence of homoclinic intersections. We also discuss the problem of the robustness of the chaos and we prove that in the present model chaotic behaviour is fragile (chaotic regions are densely intercalated with periodicity windows), according to a recently discussed conjecture. Finally we perform an analysis of the microscopic behaviour and in particular we examine the occurrence of damage spreading by studying the time evolution of two almost identical initial configurations. We show that for any choice of the parameters the two initial states remain microscopically distinct.Comment: 12 pages, 11 figures. Accepted for publication in Physical Review E. Originally submitted to the neuro-sys archive which was never publicly announced (was 9905001

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway

    Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach

    Get PDF
    Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy

    Parmbsc1: a refined force field for DNA simulations

    Get PDF
    We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ~140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/

    Field and laboratory validation of remote rover operations Science Team findings: The CanMars Mars Sample Return analogue mission

    Get PDF
    The CanMars Mars Sample Return Analogue Deployment (MSRAD) was a closely simulated, end-to-end Mars Sample Return (MSR) mission scenario, with instrumentation, goals, and constraints modeled on the upcoming NASA Mars 2020 rover mission; this paper reports on the post-mission validation of the exercise. The exercise utilized the CSA Mars Exploration Science Rover (MESR) rover, deployed to Utah, USA, at a Mars-analogue field site. The principal features of the field site located near Green River, Utah are Late Jurassic inverted, fluvial paleochannels, analogous to features on Mars in sites being considered for the ESA ExoMars rover mission and present within the chosen landing site for the Mars 2020 rover mission. The in-simulation (“in-sim”) mission operations team worked remotely from The University of Western Ontario, Canada. A suite of MESR-integrated and hand-held spectrometers was selected to mimic those of the Mars 2020 payload, and a Utah-based, on-site team was tasked with field operations to carry out the data collection and sampling as commanded by the in-sim team. As a validation of the in-sim mission science findings, the field team performed an independent geological assessment. This paper documents the field team's on-site geological assessment and subsequent laboratory and analytical results, then offers a comparison of mission (in-sim) and post-mission (laboratory) science results. The laboratory-based findings were largely consistent with the in-sim rover-derived data and geological interpretations, though some notable exceptions highlight the inherent difficulties in remote science. In some cases, available data was insufficient for lithologic identification given the absence of other important contextual information (e.g., textural information). This study suggests that the in-sim instruments were largely adequate for the Science Team to characterize samples; however, rover-based field work is necessarily hampered by mobility and time constraints with an obvious effect on efficiency but also precision, and to some extent, accuracy of the findings. The data show a dearth of preserved total organic carbon (TOC) – used as a proxy for ancient biosignature preservation potential – in the fluvial-lacustrine system of this field site, suggesting serious consideration with respect to the capabilities and opportunities for addressing the Mars exploration goals. We therefore suggest a thorough characterization of terrestrial sites analogous to those of Mars rover landing sites, and in-depth field studies like CanMars as important, pre-mission strategic exercises
    corecore