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ABSTRACT 

1) Determining the factors governing investment in immunity is critical for 

understanding host-pathogen ecological and evolutionary dynamics. Studies often 

consider disease resistance in the context of life-history theory, with the expectation 

that investment in immunity will be optimized in anticipation of disease risk. Immunity, 

however, is constrained by context-dependent fitness costs. How the costs of 

immunity vary across life-history strategies has yet to be considered.  
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2) Pea aphids are typically unwinged but produce winged offspring in response to 

high population densities and deteriorating conditions. This is an example of 

polyphenism, a strategy used by many organisms to adjust to environmental cues. 

The goal of this study was to examine the relationship between the fitness costs of 

immunity, pathogen resistance, and the strength of an immune response across 

aphid morphs that differ in life-history strategy but are genetically identical.  

 

3) We measured fecundity of winged and unwinged aphids challenged with a heat-

inactivated fungal pathogen, and found that immune costs are limited to winged 

aphids. We hypothesized that these costs reflect stronger investment in immunity in 

anticipation of higher disease risk, and that winged aphids would be more resistant 

due to a stronger immune response. However, producing wings is energetically 

expensive. This guided an alternative hypothesis—that investing resources into 

wings could lead to a reduced capacity to resist infection.  

 

4) We measured survival and pathogen load after live fungal infection, and we 

characterized the aphid immune response to fungi by measuring immune cell 

concentration and gene expression. We found that winged aphids are less resistant 

and mount a weaker immune response than unwinged aphids, demonstrating that 

winged aphids pay higher costs for a less effective immune response.  

 

5) Our results show that polyphenism is an understudied factor influencing the 

expression of immune costs. More generally, our work shows that in addition to 

disease resistance, the costs of immunity vary between individuals with different life-

history strategies. We discuss the implications of these findings for understanding 

how organisms invest optimally in immunity in light of context-dependent constraints.  

 

INTRODUCTION 

Despite the ubiquity of pathogens and parasites in nature, hosts vary extensively in 

how well they defend themselves against infection. This variation is attributed in part 

to costs associated with defense—activating and maintaining immunological 

mechanisms comes at the expense of other components of host fitness. On an 

evolutionary scale, immunity is costly because resistance traits can be inherited with 

linked deleterious mutations, or can be negatively pleiotropic such that protective 
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alleles produce deleterious effects on other traits (Kraaijeveld & Godfray 1997; 

Valtonen et al. 2010). On an ecological scale, deploying immune mechanisms is 

costly both because immune responses can cause autoimmune damage (Sadd & 

Siva-Jothy 2006; Graham et al. 2010), and because mounting an immune response 

is energetically costly. Individuals are faced with a limited pool of resources that must 

fuel the immune system among other fitness-related traits (Hamilton & Zuk 1982; 

Simms & Rausher 1987). When resources are depleted, for instance through 

nutritional constraints, immunity suffers (Feder et al. 1997; Vass & Nappi 1998; Siva-

Jothy & Thompson 2002; Lee et al. 2006; Myers et al. 2011; Brunner, Schmid-

Hempel & Barribeau 2014).  

 

Given these costs, natural selection is expected to optimize investment in 

immunity in anticipation of environmental conditions. This idea is illustrated by 

studies that associate disease resistance with life-history strategy. Species with rapid 

growth and short life spans, for example, invest little in immunological defenses 

compared with species with longer life spans. For example, ‘slow-living’ species of 

Neotropical birds have higher natural antibody titers compared to ‘fast-living’ species, 

suggesting that they invest more in developmentally costly adaptive immune 

mechanisms (Lee et al. 2008). Long-lived species are thought to invest more heavily 

in immunity because they have a higher likelihood of pathogen exposure (Cronin et 

al. 2010; Johnson et al. 2012), though see (Martin, Weil & Nelson 2007). Similarly, 

the higher rate of parasitism associated with sociality is thought to lead social 

species to invest more in immunity compared with solitary species (Møller et al. 

2001). Similar patterns are found within species, where developmentally-plastic life-

history strategies have been shown to influence disease resistance. Many organisms 

respond to ecological cues with dramatic shifts in morphology through a form of 

plasticity referred to as polyphenism (Simpson, Sword & Lo 2011). As these 

morphological and behavioral changes also lead to shifts in other classic life-history 

traits, such as fecundity (Miner et al. 2005), polyphenism can be viewed as a type of 

life-history strategy. In locusts, for example, high population densities lead to a 

switch from a solitary non-dispersing morph to a swarming migratory morph 

(Guershon & Ayali 2012), and these migratory-morph locusts are more resistant to a 

pathogenic fungus (Wilson et al. 2002). Similarly, the Egyptian cotton leafworm 

exhibits a density-dependent polyphenism related to cuticle color. The darker, high-
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density morph (which is smaller and in poorer body condition) is more resistant to 

fungal pathogen infection, likely because of increased phenoloxidase activity (Wilson 

et al. 2001; Cotter et al. 2004). These studies are consistent with the framework that 

individuals in high-density populations should invest more in disease resistance 

when parasite transmission is density-dependent, a phenomenon referred to as 

‘density-dependent prophylaxis’ (Wilson & Reeson 1998).  

 

Because immunity and other aspects of host fitness draw from a common pool of 

resources, it may seem reasonable to predict a simple relationship between 

immunity and fitness measures—that a stronger immune response will increase 

resistance but come at a greater cost to the host. However, empirical work has 

demonstrated that the expression of immune costs is dependent on ecological 

context. For example, immune induction of bumblebees decreases survival only 

under conditions of starvation (Moret & Schmid-Hempel 2000). Thus in certain 

contexts, the pool of resources available to an organism is sufficient to produce an 

immune response without negatively influencing survival or fecundity, but under 

other conditions immunity trades-off with other fitness traits. The context dependency 

of immune costs may explain why empirical studies frequently fail to measure fitness 

effects of immunity (Zuk & Stoehr 2002). However, we do not yet understand how 

context-dependent immune costs constrain optimal investment in immunity across 

life-history strategies.  

 

Here we study the costs, efficacy, and strength of the immune response in 

winged/dispersing and wingless/sedentary morphs of the pea aphid (Acyrthosiphon 

pisum). Throughout the summer, pea aphids produce genetically-identical offspring 

that are normally unwinged. In response to signals of crowded and deteriorating 

conditions, however, adult female aphids induce a proportion of their embryos to 

begin developing wings (Sutherland 1969; Brisson & Stern 2006; Grantham et al. 

2016) through a signaling cascade that involves biogenic amines and the molt 

hormone ecdysone (Vellichirammal, Madayiputhiya & Brisson 2016). Nymphs 

emerge with developing wing buds that quickly degrade in unwinged morphs but 

develop in winged morphs until becoming fully functional at adulthood (approximately 

9 days after birth), when winged aphids disperse to new environments (Brisson 

2010). This system allows us to study immune costs in individuals that differ in life-
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history strategy but are genetically identical. Our hypothesis was that winged aphids 

are provisioned with a stronger immune system to bolster resistance to disease in 

response to signals of unfavorable, crowded environments, and that the costs of 

immunity would be higher in winged aphids. However, the production of wings and 

the associated musculature requires resources, and previous work has 

demonstrated that wing production trades off with reproductive investment, 

development time, and body size (Johnson 1963; Dixon & Howard 1986; Groeters & 

Dingle 1989; Brisson 2010). This guided an alternative hypothesis—that the energy 

invested in wing production could lead to a reduced capacity to invest in disease 

resistance. Under this scenario, winged aphids would be less resistant to infection 

and would mount a weaker immune response. We tested between these hypotheses 

by measuring lifetime fecundity, survival, pathogen load, and cellular and humoral 

immune measures after challenge with a natural fungal pathogen.  

 

METHODS 

Study organism: We maintained pea aphids asexually on fava bean (Vicia faba) 

plants in 16 hr light: 8 hr dark at 20°C. All aphids used in a given experiment were 

born within a 24hr period to reduce ontogenetic differences among individuals. We 

exposed developing aphids to the pheromone (E)-β-farnesene (EBF) at a dose that 

causes them as adults to give birth to approximately 50% winged and 50% unwinged 

offspring (5 μL of 1000 ng/μL EBF every 48 hrs for 10 days) (Barribeau, Sok & 

Gerardo 2010; Barribeau, Parker & Gerardo 2014a). This protocol allowed us to 

produce both winged and wingless offspring under identical, ‘ideal’ conditions: both 

morphs were born from the same mothers and reared at the same densities on the 

same host plants. For the experimental work described below (cost of exposure 

experiments and assays of resistance) we used three genotypes: LSR1-01, 5AO, 

and G6 (Table S1). For the immunological and genomic studies we used genotype 

LSR1-01. None of the aphid lines used in the study harbor secondary bacterial 

symbionts (Parker, Garcia & Gerardo 2014).  
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Cost of Exposure Assays: Our protocol was designed to assess the cost of 

immune activation without pathogen virulence (Mckean et al. 2008) or immune 

manipulation (Barribeau et al. 2014b) in winged vs. unwinged aphids. To do so, we 

challenged aphids with a heat-killed inoculum of an ecologically relevant pathogen, 

Pandora neoaphidis (Van Veen et al. 2008). We measured the fitness of control 

aphids (stabbed with a sterile needle) relative to those given the heat-killed pathogen 

(stabbed with needle coated with heat-killed fungal spores and mycelia). To make 

the heat-killed fungal solution, we first grew an isolate of P. neoaphidis (genotype 

ARSEF 2588, USDA ARS Collection of Entomopathogenic Fungal Cultures) for 2 

weeks on SDAEY plates at 20°C (Papierok & Hajek 1997). We then added 

approximately 1 cm2 of mycelium to 250μl Ringers solution, and then autoclaved 

(121°C for 20 minutes) and homogenized this solution with a pestle. We exposed six 

day old aphids to this heat-killed Pandora by stabbing them ventrally in the thorax 

with a 0.10mm minutin pin contaminated with the heat-killed pathogen, or with a 

sterile minutin pin dipped in Ringers solution as a control (Altincicek, Gross & 

Vilcinskas 2008; Barribeau et al. 2010). In previous work, we found no differences in 

fecundity between non-stabbed and sterile-stabbed aphids (Barribeau et al. 2014a). 

We then allowed the aphids 30 minutes to recover in a clean Petri dish before we put 

them individually onto fava bean plants in cup cages. We performed three replicates 

of the experiment, carried out several weeks apart, each using a different host 

genotype—LSR1-01 (n = 209 aphids), 5AO (n = 214), and G6 (n = 104). Every 48 

hours we counted the number of offspring produced by each aphid; offspring were 

removed from the plants after counting to prevent overcrowding, and plants were 

trimmed as necessary. We replaced the plants every 14 days, and continued the 

experiment until all individuals stopped reproducing. We analyzed these data using 

generalized linear models (GLMs), with a quasi-corrected Poisson distribution and 

log link function, in R (v 2.11). We included morph, treatment, and genotype as 

factors. Minimal models were derived by the step-wise removal of terms in the 

reverse order of the model, followed by model comparisons using ANOVA and F-

tests. Terms were retained if their removal significantly reduced the explanatory 

power of the model (at p < 0.05). We then performed multiple comparison tests using 

the multcomp package in R (Hothorn, Bretz & Westfall 2008).  
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Live infection: We characterized the susceptibility of winged and unwinged aphids 

to live Pandora infection by exposing aphids to a Pandora ‘spore shower’ (based on 

Hajek & Papierok 2012), the natural route of Pandora infection. Pandora strain 

ARSEF 2588 was grown on SDAEY plates as above, and small pieces of fungal 

mycelium were cut and placed onto 1.5% tap water agar. After approximately 15 

hours, the (now sporulating) fungus was inverted over hollow tubes with aphids at 

the bottom of the chamber. This exposure results in a dose of approximately 5 

spores / mm2 based on our previous work (Parker et al. 2014). Fungal plates were 

rotated among treatment groups to ensure that each treatment received an equal 

inoculation dose by controlling for variation among culture plates, and control aphids 

were handled similarly but were not exposed to spores. We exposed winged (n = 

150) and unwinged (n = 169) aphids of the same three genotypes used above (5A0, 

n = 131; LSR, n = 138; G6, n = 50). As Pandora kills hosts between five and eight 

days after exposure (Parker et al. 2014), we recorded survival and whether each 

aphid had produced a sporulating cadaver on the ninth day after pathogen exposure. 

We analyzed these data using a GLM with a binomial distribution (and logit link 

function). For the survival data, we included morph, treatment, and genotype as 

factors in the model, and for the sporulation data we included morph and genotype 

(as no control aphids produced a sporulating cadaver). We performed model 

comparisons as above, using ANOVA and χ2 tests.  

 

Quantifying pathogen load: We measured Pandora titers using quantitative PCR to 

measure the pathogen load of infected aphids. A live infection was performed as 

described above. Aphids were flash frozen in liquid nitrogen at 24, 48, 72, and 96 

hours after infection, and then stored at -80°C. At each time point, we collected two 

biological replicates from three genotypes of both winged and unwinged aphids. 

Each biological replicate contained five aphids collected from the same bean plant. 

To extract DNA, aphids were washed in ethanol and then homogenized in Bender 

buffer (with Proteinase K), followed by protein precipitation with potassium acetate 

and DNA precipitation using ethanol. Primers for the Pandora 18S ribosomal RNA 

gene (Accession: EU267189.1) were designed using Primer Express 3.0 

(Supplementary Information H), and primer efficiencies were optimized to 100 +/- 5% 

efficiency. We used the Invitrogen TOPO TA cloning kit with pCR 2.1 vector to clone 
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our target fragment into One Shot TOP10 competent E. coli cells, and we extracted 

amplified plasmids using GE Healthcare illustra plasmidPrep Mini Spin Kit under 

recommended conditions. The cloned fragment was sequenced with the M13F 

primer to confirm its identity. We used the standard curve method on an Applied 

Biosystems Step One Plus platform, measuring target amplification in experimental 

samples and in a standard dilution series (using 6 dilutions of 1:5 starting with 3.2 x 

106 copies), with three technical replicates. The threshold cycle (Ct) was averaged 

across technical replicates, and Pandora 18S copy number was determined using 

Applied Biosystems Step One Plus software. To analyze these data we used a 

quasi-corrected Poisson-distributed GLM as above, with morph, genotype, and day 

as factors.  

 

Cellular Immunity Assays: We counted circulating immune cells as a measure of 

the aphid cellular immune response. Hemolymph was collected from leg wounds 

from aphids until 0.25μl was obtained, and samples were then smeared onto a slide. 

Hemolymph was then fixed and stained using a Diff-Quik stain set (Dade Behring). 

Previous work on aphid immunity has identified distinct immune cells (haemocytes) 

(Laughton et al. 2011; Schmitz et al. 2012), some of which display phagocytic 

properties (Vilcinskas & Götz 1999; Schmitz et al. 2012) and therefore may play a 

role in the aphid immune response to fungal pathogens (Hajek & St Leger 1994). We 

then counted the number of circulating immune cells under a light microscope. Using 

both winged and unwinged aphids, we performed two experiments using this basic 

protocol. In the first experiment, we stabbed aphids (n = 51 total) with a heat-killed 

Pandora solution as above, with a sterile stab control and a no-stab control, and 

collected hemolymph 24 hours after exposure. In the second experiment we 

performed a live infection as described above, and collected hemolymph from 

infected and uninfected aphids (n = 69 total) at 48 and 96 hours after exposure. We 

analyzed cell counts using a quasi-corrected Poisson-distributed GLM as described 

above. Note that in a pilot study we found that winged aphids had about half as 

much hemolymph as unwinged aphids, but had a higher concentration of circulating 

cells. We therefore do not make direct comparisons between morphs using cell 

concentrations, and instead show relative changes in cell titer as a result of Pandora 

exposure between morphs.  
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Identifying candidate immune genes with RNAseq: We used RNA sequencing of 

winged aphids to compare the transcriptional response of control vs. Pandora-

infected aphids. Winged aphids (genotype LSR1-01), which were produced using 

EBF-exposure as above, were infected using a combination of spores from three 

fungal strains (ARSEF 2773, 2853, 2588). RNA was extracted and then pooled from 

aphids 48 and 72 hours after pathogen exposure using Trizol following the 

manufacturer’s specifications. For both treatments (control, Pandora infected), RNA 

from 10 aphids (collected from two host plants) from the two time-points was pooled 

(20 aphids total), and libraries were constructed using the Illumina TruSeq kit. cDNA 

libraries were then multiplexed across four lanes on an Illumina HiSeq machine, 

producing ~250 million reads per treatment. Reads were quality trimmed using the 

ea-utils fastq-mcf (http://code.google.com/p/ea-utils/wiki/FastqMcf), and were 

mapped to pea aphid genome assembly version 2 using Tophat v. 2.0.3 (Trapnell et 

al. 2012; Kim et al. 2013). Transcripts were assembled using cufflinks v. 2.0.1 

(Trapnell et al. 2012). Differential expression of transcripts was determined using 

cuffdiff, and transcripts were assigned to genes based on published annotations from 

the pea aphid genome project (International Aphid Genomics Consortium 2010).  

 

qPCR assays of candidate immune gene expression: We used quantitative PCR 

to examine the expression patterns of genes identified through RNAseq as 

potentially important in the aphid response to Pandora infection. We included both 

winged and unwinged aphids, produced through EBF-exposure as above, across 

multiple time points. We infected aphids (LSR1-01 genotype) with Pandora as above 

(with strain ARSEF 2588), and flash-froze aphids in liquid nitrogen at 12, 24, and 48 

hours after exposure. We tested three biological replicates (5 aphids each collected 

from one host plant per replicate) of each combination of morph, treatment, and time 

point. Aphids were stored at -80°C until RNA extraction using Trizol. Genomic DNA 

contamination was reduced using the Invitrogen Turbo DNA-free kit, and RNA was 

converted to cDNA using Invitrogen SuperScript III First-Strand Synthesis under 

recommended protocols. Primers were designed based on the RNAseq data 

generated above using Primer Express 3.0 (see primer table in the Supplemenary 

Information). Primer concentrations were optimized to 100 +/- 5% efficiency, and A. 

pisum Ef1α was used as the endogenous control (Wilson et al. 2006). We included 
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nine of the genes identified from the RNAseq experiment, and also included 

Cathepsin L, which was not differentially expressed in our RNAseq analysis as a 

negative control. For each gene, we subtracted the critical threshold value (Ct) for 

the endogenous control from the target gene for each sample (ΔCt). We analyzed 

differential expression of each gene at each time-point using ANOVA after testing for 

normality to compare ΔCt values for control and infected aphids from both morphs. A 

significant interaction effect between morph and treatment indicated that the 

magnitude of a change in expression of the target gene differed between morphs.  

 

RESULTS 

Exposure to heat-killed fungal solution reduced lifetime fecundity in winged aphids 

but had no effect on unwinged aphids (treatment x morph interaction; Table 1, Figure 

1) across three different genotypes (Table 1; Figure SA; Supplementary Information 

A). We confirmed that heat-killed Pandora did not affect aphid survival (Figure SB; 

Supplementary Information B; Barribeau et al. 2014a).  

 

Winged aphids were significantly more likely to die from fungal infection than 

unwinged aphids (Table 1, Figure 2A) across multiple genotypes (Table 1, Figure 

SC; Supplementary Information C). Winged aphids were also significantly more likely 

to produce a sporulating cadaver than unwinged aphids (Table 1, Figure 2B) across 

genotypes (Figure SC; Supplementary Information C). Pandora is transmitted after it 

produces a sporulating cadaver, and the success or failure of spore production is 

thus essential to pathogen transmission. Pandora’s disproportionate success on 

winged hosts is not driven solely by differences in the ability of spores to penetrate 

the host cuticle as injection with spores rather than surface exposure produced 

similar results (Figure SD; Supplementary Information D). Pandora grew 

logarithmically during the first four days of infection, and winged aphids had higher 

pathogen loads than unwinged aphids across aphid genotypes, and pathogen load 

differed across genotypes (Table 1, Figure 2C). Together these results indicate that 

winged aphids are more susceptible than unwinged aphids to Pandora infection.  
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Winged aphids exhibited significantly depleted circulating immune cells after 

exposure to heat-killed Pandora compared to control stab and unchallenged aphids, 

but we found no significant changes in cell concentration in unwinged aphids (Table 

1, Figure 3A). We found the same pattern using a live Pandora infection—96 hours 

after exposure winged aphids exhibited significantly depleted immune cells, while 

cell number in unwinged aphids remained unchanged (Table 1, Figure 3B). Neither 

morph showed reduced cell counts 48 hrs after a live Pandora infection (Figure SE; 

Supplementary Information E), giving a coarse-grained indication of the temporal 

scale of immune activation and depletion in response to this pathogen.  

 

We verified that the aphids used for transcriptome sequencing were successfully 

infected with fungus and showed the same patterns of resistance as above (Figure 

SF; Supplementary Information F). We found evidence of expression in at least one 

of the two libraries (winged control, winged fungus) of 38,227 unique transcripts 

using whole transcriptome sequencing. Quality trimming the reads using ea-utils 

fastq-mcf tool improved the percentage of reads that mapped to the reference 

genome (Table S2; Supplementary information G). We identified 1,668 significantly 

differentially expressed transcripts, including multiple putative immune-related genes. 

These included phenoloxidase, lysozyme-i, C-type lectin, serine proteases, and a 

number of cathepsins. We also detected significant down-regulation of cuticle 

proteins, which may be biologically important as Pandora penetrates the host cuticle. 

Similar to other transcriptomic studies of invertebrates responses to fungal infections 

(Xia et al. 2013), we also found differential expression of genes that may be involved 

in detoxification, such as Cytochrome p450 and Peroxidasin, and in DNA repair, 

such as Cop 9 signalosome. A complete list of transcripts and expression values is 

included as Supplementary File 2.  

 

Using qPCR, we found that several putative immune genes were upregulated 48 

hours after infection, and that phenoloxidase, several cathepsins, and legumain were 

upregulated in response to Pandora more strongly in unwinged than winged aphids 

(Figure 4, Supplementary Information I). Earlier time-points did not show significant 

patterns of differential expression. We also measured expression at 72-hrs after 

infection for phenoloxidase, and found that the upregulation in response to fungal 
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infection at the 48-hr timepoint had subsided by 72 hrs (Figure SJ; Supplementary 

Information J).  

 

DISCUSSION  

We found strong fecundity costs of an immune response to a natural fungal 

pathogen in winged, but not in genetically-identical unwinged aphids. Two 

hypotheses could potentially explain this pattern. First, winged aphids may be 

mounting a stronger immune response than unwinged aphids. Winged aphids are 

produced in response to signals of crowding and other ecological conditions that 

could increase the probability of pathogen exposure (Sutherland 1969; Brisson & 

Stern 2006). Winged aphids may invest more heavily in immunity in anticipation of 

this risk, and consequently experience greater immune costs than unwinged aphids. 

Under this scenario, we would expect winged aphids to be less susceptible to 

Pandora infection than unwinged aphids. Second, relatively higher costs of immunity 

in winged aphids could be the result of greater energetic demands—the production 

of wings and associated musculature requires host resources and leads to lower 

lifetime fecundity in aphids (Figure 1, (Groeters & Dingle 1989) and in other animals 

(Chapman, Reynolds & Wilson 2015). As a result, winged aphids may be 

energetically limited to the point that an immune response negatively influences 

fecundity. Under this scenario, we would expect winged aphids to be equally or more 

susceptible to live Pandora infection than unwinged aphids.  

 

We characterized the susceptibility of both morphs to live Pandora infection to 

test between these two hypotheses. We found that winged aphids had lower survival 

after pathogen exposure and produced more sporulating cadavers. Winged aphids 

also had higher pathogen loads than unwinged aphids as measured by qPCR. 

These results demonstrate that winged aphids are more susceptible to fungal 

infection than unwinged aphids and are consistent with the hypothesis of energetic 

limitation. We note that an alternative interpretation of our live infection assay could 

be that winged aphids simply disperse from a crowded area before they get exposed 

to fungal spores. Under this scenario, winged aphids would invest less in immunity in 

anticipation of lower overall disease risk, which is consistent with our findings of 

higher susceptibility to fungal pathogen infection. However, winged offspring are 

produced when unwinged adult mothers experience crowded conditions. Winged 
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offspring experience these same high density conditions during their juvenile instars, 

as their wings (which are developing during the juvenile phase) do not become 

functional until adulthood. We therefore think it is likely that winged aphids are 

experiencing higher disease risk from crowding during development than unwinged 

aphids, but future work is needed on the disease dynamics of this system.   

 

We then used cellular immune assays and measures of gene expression to 

characterize the pea aphid immune response to Pandora. We counted circulating 

immune cells under a light microscope and found that unwinged aphids maintained 

cell titers during the course of fungal infection but that cell titers were depleted in 

winged aphids. This result was consistent across both a heat-killed fungal challenge 

and with a live fungal infection. We also found a slight decrease in cell concentration 

in sterile stab vs. control aphids of both morphs (although this change was not 

significant), perhaps due to recruitment of circulating haemocytes to the wound site. 

A number of studies have interpreted changes in hemocyte counts as evidence for 

differences in immune activity, but patterns have not been consistent across systems. 

For example, higher numbers of hemocytes in solitary vs. gregarious lepidopterans 

was interpreted as greater investment in immunity in solitary species (Wilson et al. 

2003), and increases in immune cell numbers have been reported as indicating a 

response to parasitic wasp infection in Drosophila (Sorrentino, Carton & Govind 

2002; Márkus et al. 2009). Conversely, depleted cell counts have been found in 

some insect systems several days after fungal infection (Hung & Boucias 1992; 

Gillespie, Burnett & Charnley 2000). Similarly, studies have shown decreases in cell 

titers as a consequence of resource allocation. For example, when worker 

bumblebees transition from nursing to foraging they decrease hemocyte titer 

(Amdam et al. 2005). We argue that the patterns seen in our data are reflective of 

stronger investment in immunity in unwinged aphids, but we acknowledge the 

difficulties of interpreting changes in immune cell titers in the absence of other 

measures of an immune response.  

 

We therefore also looked at changes in expression of putative immune genes in 

response to fungal infection. RNA sequencing of winged aphids revealed 

upregulation of canonical immune genes, including phenoloxidase and several 

cathepsins (which are proteases that have been shown to be expressed in 
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hemocytes and to have lysozymal activity against bacteria and viruses in other 

invertebrates (Tryselius & Hultmark 1997; Nishikori et al. 2009; Serbielle et al. 2009; 

Hamilton, Lejeune & Rosengaus 2011; Liu et al. 2013)) in response to fungal 

infection. A similar study using proteomics to study the response of grain aphids 

(Sitobion avenae) to Pandora also found expression of phenoloxidase and 

cathepsins (Grell et al. 2011), suggesting that these mechanisms may be conserved 

across aphid species. Using qPCR, we assayed expression of several of these 

genes across multiple time-points during fungal infection in winged and unwinged 

aphids. At 48hrs post-infection, phenoloxidase, legumain, and three cathepsins were 

more strongly upregulated in unwinged than in winged aphids. Together our 

investigation of the pea aphid immune response to Pandora suggests that unwinged 

aphids are mounting a stronger immune response than winged aphids. In addition, 

our work demonstrates that aphids mount an immune response to fungal infection 

using several canonical insect immune mechanisms, which is of interest given that 

aphids have a reduced immune gene repertoire compared to other insects (Gerardo 

et al. 2010).  

 

By measuring survival, fecundity, and the immune responses of different morphs 

after pathogen exposure, we describe the relationship between the strength, 

effectiveness, and cost of an immune response (Graham et al. 2011). Consistent 

with our alternative hypothesis, increased immune costs were associated with 

decreased resistance and a weaker immune response. We propose that reduced 

investment in immunity is a necessary developmental response to the limited 

resources available for winged aphids given their energetic investment in wings and 

the associated musculature. In other words, winged aphids are energetically 

constrained because they invest in wing production, and as a result have insufficient 

resources to produce an immune response without negatively influencing lifetime 

fecundity. However, there is an additional, adaptive explanation that should be 

considered. Because winged aphids are produced in response to crowded conditions, 

they may be programmed to invest less in immunity because they are more likely to 

experience greater competition for resources. These limitations may have shaped 

epigenetic programming of resource use away from non-dispersal traits like disease 

resistance.  
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While the evolutionary and ecological costs of having and using an immune 

system are likely universal, the relative costs to an individual depend on ecological 

context. The fitness costs associated with immunity have informed our 

understanding of the evolution and maintenance of variation among individuals in 

pathogen susceptibility (Schmid-Hempel 2003; Sadd & Schmid-Hempel 2009) and 

how pathogen virulence evolves (Gandon & Michalakis 2000; Mackinnon & Read 

2004; de Roode et al. 2011). Condition-dependent immune costs have been 

observed in other systems, primarily under conditions of starvation (Kraaijeveld & 

Godfray 1997; Moret & Schmid-Hempel 2000; Mckean et al. 2008; Cotter et al. 2010). 

Determining the conditions under which immunity impacts host fitness is thus critical 

for our understanding of host-pathogen interactions. Our results show that 

polyphenism is an important and understudied factor influencing the expression of 

immune costs. Many organisms, from seasonal forms of lepidopterans and different 

castes of social hymenopterans to the cannibalistic and non-cannibalistic morphs of 

tiger salamanders, similarly use developmental plasticity to survive in heterogeneous 

environments (Pfennig & Collins 1993; Simpson et al. 2011). We expect that variable 

immune costs across morphs influence host-parasite ecology and evolution across 

the large number of taxonomically-diverse organisms that exhibit polyphenism.   

 

More generally, our results have implications for understanding how immune 

investment is constrained by ecological context. Several studies have shown that 

life-history strategies influence disease resistance within and between species, and 

suggest that natural selection optimizes immune investment in anticipation of 

disease risk. However, because immune costs are context-dependent, we need a 

better understanding of how immune costs vary across life-history strategies to 

understand how costs constrain optimal investment in immunity. One possibility is 

that in many cases resistance cannot be tailored to disease risk across life-history 

strategies because investment in immunity is constrained by context-dependent 

costs. Our expectation is that winged aphids experience a higher risk of disease 

because they are produced in response to crowded conditions. Several studies have 

measured high rates of fungal infection in wild-collected winged aphids, and these 

studies highlight the importance of winged aphids in the spread of fungal pathogens 

(Feng, Chen & Chen 2004; Feng et al. 2007). It is therefore surprising that winged 

aphids invest less in immunity, and this system could represent a scenario where 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

immune costs cause individuals to deviate from optimal immune investment. 

However, additional data on the probability of pathogen exposure of aphid morphs 

under natural conditions is needed to test these assumptions.  

 

Lastly, our findings have implications for our understanding of life-history 

strategies associated with dispersal. Winged aphids are important for the movement 

of aphid genotypes. Like aphids, many species exhibit physiological differences 

associated with migration and dispersal, especially as a result of the increased 

energetic demands of movement (Karlsson & Johansson 2008; Bonte et al. 2012). If 

dispersal influences the association between immunity and fitness similarly in other 

taxa, the increased susceptibility of dispersing animals could be an important driver 

of disease dynamics. This may also have evolutionary implications as the rates of 

dispersal of hosts and pathogens affect the evolution of local adaptation (Gandon et 

al. 1996; Lively 1999). An increase in host susceptibility because of the physiological 

demands of dispersal could increase parasite transmission, thereby influencing host-

pathogen coevolution.  

 

ACKNOWLEDGEMENTS: Members of the Gerardo lab, J. Brisson, N. Moran, and two 

anonymous reviewers provided valuable feedback on drafts of this manuscript. This 

work was supported by NSF grant IOS-1025853 to NMG. BJP was supported by a 

graduate research fellowship and NSF grant DBI-1306387. SMB was supported by 

the Swiss NSF (# 31003A-116057 to Paul Schmid-Hempel). LG was supported by 

Emory University’s NIH IRACDA FIRST postdoctoral program.  

 

DATA ACCESSIBILITY: Data available from the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.4kp7s (Parker et al. 2017). Raw reads from RNA 

sequencing were uploaded to the NCBI short read archive (SRA) with accession 

number SRP093772. 

 

AUTHORS’ CONTRIBUTIONS STATEMENT: BJP, SMB, and NMG designed the research 

and wrote the paper; BJP, SMB, and AML performed the research; BJP, SMB, and 

LHG analyzed the data. The authors declare no conflicts of interest.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

REFERENCES 

Altincicek, B., Gross, J. & Vilcinskas, A. (2008) Wounding-mediated gene expression 
and accelerated viviparous reproduction of the pea aphid Acyrthosiphon pisum. 
Insect Molecular Biology, 17, 711–716. 

Amdam, G.V., Aase, A.L.T.O., Seehuus, S.-C., Kim Fondrk, M., Norberg, K. & 
Hartfelder, K. (2005) Social reversal of immunosenescence in honey bee 
workers. Experimental gerontology, 40, 939–947. 

Barribeau, S.M., Parker, B.J. & Gerardo, N.M. (2014a) Exposure to natural 
pathogens reveals costly aphid response to fungi but not bacteria. Ecology and 
Evolution, 4, 488–493. 

Barribeau, S.M., Sadd, B.M., Plessis, du, L. & Schmid-Hempel, P. (2014b) Gene 
expression differences underlying genotype-by-genotype specificity in a host-
parasite system. Proceedings Of The National Academy Of Sciences Of The 
United States Of America, 111, 3496–3501. 

Barribeau, S.M., Sok, D. & Gerardo, N.M. (2010) Aphid reproductive investment in 
response to mortality risks. BMC Evolutionary Biology, 10, 251. 

Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, 
V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V.M., 
Vandewoestijne, S., Baguette, M., Barton, K., Benton, T.G., Chaput-Bardy, A., 
Clobert, J., Dytham, C., Hovestadt, T., Meier, C.M., Palmer, S.C.F., Turlure, C. & 
Travis, J.M.J. (2012) Costs of dispersal. Biological reviews of the Cambridge 
Philosophical Society, 87, 290–312. 

Brisson, J.A. (2010) Aphid wing dimorphisms: linking environmental and genetic 
control of trait variation. Philosophical Transactions Of The Royal Society B-
Biological Sciences, 365, 605–616. 

Brisson, J.A. & Stern, D.L. (2006) The pea aphid, Acyrthosiphon pisum: an emerging 
genomic model system for ecological, developmental and evolutionary studies. 
BioEssays, 28, 747–755. 

Brunner, F.S., Schmid-Hempel, P. & Barribeau, S.M. (2014) Protein-poor diet 
reduces host-specific immune gene expression in Bombus terrestris. 
Proceedings Of The Royal Society B-Biological Sciences, 281. 

Chapman, J.W., Reynolds, D.R. & Wilson, K. (2015) Long-range seasonal migration 
in insects: mechanisms, evolutionary drivers and ecological consequences. 
Ecology Letters, 18, 287–302. 

Cotter, S.C., Hails, R.S., Cory, J.S. & Wilson, K. (2004) Density-dependent 
prophylaxis and condition-dependent immune function in Lepidopteran larvae: a 
multivariate approach. Journal of Animal Ecology, 73, 283–293. 

Cotter, S.C., Topham, E., Price, A.J.P. & Kilner, R.M. (2010) Fitness costs 
associated with mounting a social immune response. Ecology Letters, 13, 1114–
1123. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Cronin, J.P., Welsh, M.E., Dekkers, M.G., Abercrombie, S.T. & Mitchell, C.E. (2010) 
Host physiological phenotype explains pathogen reservoir potential. Ecology 
Letters, 13, 1221–1232. 

de Roode, J.C., Fernandez de Castillejo, C.L., Faits, T. & Alizon, S. (2011) Virulence 
evolution in response to anti-infection resistance: toxic food plants can select for 
virulent parasites of monarch butterflies. Journal Of Evolutionary Biology, 24, 
712–722. 

Dixon, A.F.G. & Howard, M.T. (1986) Dispersal in aphids, a problem in resource 
allocation. Insect flight: dispersal and migration (ed W. Danthanarayana), pp. 
145–151. Springer-Verlag, Berlin, Germany. 

Feder, D., Mello, C.B., Garcia, E.S. & Azambuja, P. (1997) Immune responses in 
Rhodnius prolixus: influence of nutrition and ecdysone. Journal of Insect 
Physiology, 43, 513–519. 

Feng, M.-G., Chen, C. & Chen, B. (2004) Wide dispersal of aphid-pathogenic 
Entomophthorales among aphids relies upon migratory alates. Environmental 
Microbiology, 6, 510–516. 

Feng, M.-G., Chen, C., Shang, S.-W., Ying, S.H., Shen, Z.-C. & Chen, X.-X. (2007) 
Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural 
control agents of aphids. Ecological Entomology, 32, 97–104. 

Gandon, S. & Michalakis, Y. (2000) Evolution of parasite virulence against qualitative 
or quantitative host resistance. Proceedings Biological sciences / The Royal 
Society, 267, 985–990. 

Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y. & Olivieri, I. (1996) Local 
adaptation and gene-for-gene coevolution in a metapopulation model. 
Proceedings Biological sciences / The Royal Society, 263, 1003–1009. 

Gerardo, N.M., Altincicek, B., Anselme, C., Atamian, H., Barribeau, S.M., de Vos, M., 
Duncan, E.J., Evans, J.D., Gabaldon, T., Ghanim, M., Heddi, A., Kaloshian, I., 
Latorre, A., Moya, A., Nakabachi, A., Parker, B.J., Perez-Brocal, V., Pignatelli, M., 
Rahbé, Y., Ramsey, J.S., Spragg, C.J., Tamames, J., Tamarit, D., 
Tamborindeguy, C., Vincent-Monegat, C. & Vilcinskas, A. (2010) Immunity and 
other defenses in pea aphids, Acyrthosiphon pisum. Genome biology, 11, R21. 

Gillespie, J.P., Burnett, C. & Charnley, A.K. (2000) The immune response of the 
desert locust Schistocerca gregaria during mycosis of the entomopathogenic 
fungus, Metarhizium anisopliae var acridum. Journal of Insect Physiology, 46, 
429–437. 

Graham, A.L., Hayward, A.D., Watt, K.A., Pilkington, J.G., Pemberton, J.M. & 
Nussey, D.H. (2010) Fitness correlates of heritable variation in antibody 
responsiveness in a wild mammal. Science (New York, NY), 330, 662–665. 

Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K.J.R., Wilson, A.J. & Little, T.J. 
(2011) Fitness consequences of immune responses: strengthening the empirical 
framework for ecoimmunology. Functional Ecology, 25, 5–17. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Grantham, M.E., Antonio, C.J., O'Neil, B.R., Zhan, Y.X. & Brisson, J.A. (2016) A 
case for a joint strategy of diversified bet hedging and plasticity in the pea aphid 
wing polyphenism. Biology Letters, 12, 20160654. 

Grell, M.N., Jensen, A.B., Olsen, P.B., Eilenberg, J. & Lange, L. (2011) Secretome of 
fungus-infected aphids documents high pathogen activity and weak host 
response. Fungal genetics and biology : FG & B, 48, 343–352. 

Groeters, F.R. & Dingle, H. (1989) The cost of being able to fly in the milkweed 
oleander aphid, aphis nerii (homoptera, aphididae). Evolutionary Ecology, 3, 
313–326. 

Guershon, M. & Ayali, A. (2012) Innate phase behavior in the desert locust, 
Schistocerca gregaria. Insect Science, 19, 649–656. 

Hajek, A.E. & Papierok, B. (2012) Methods for study of the Entomophthorales. 
Manual of techniques in invertebrate pathology, 2nd ed (ed L.A. Lacey), pp. 285–
315. Academic Press, London. 

Hajek, A.E. & St Leger, R.J. (1994) Interactions between fungal pathogens and 
insect hosts. Annual Review of Entomology, 39, 293–322. 

Hamilton, C., Lejeune, B.T. & Rosengaus, R.B. (2011) Trophallaxis and prophylaxis: 
social immunity in the carpenter ant Camponotus pennsylvanicus. Biology 
Letters, 7, 89–92. 

Hamilton, W. & Zuk, M. (1982) Heritable true fitness and bright birds - A role for 
parasites. Science (New York, NY), 218, 384–387. 

Hothorn, T., Bretz, F. & Westfall, P. (2008) Simultaneous inference in general 
parametric models. Biometrical journal. Biometrische Zeitschrift, 50, 346–363. 

Hung, S.-Y. & Boucias, D.G. (1992) Influence of Beauveria bassiana on the cellular 
defense response of the beet armyworm, Spodoptera exigua. Journal of 
Invertebrate Pathology, 60, 152–158. 

International Aphid Genomics Consortium. (2010) Genome sequence of the pea 
aphid Acyrthosiphon pisum. PLoS Biology, 8, e1000313. 

Johnson, C.G. (1963) Physiological factors in insect migration by flight. Nature, 198, 
423–427. 

Johnson, P.T.J., Rohr, J.R., Hoverman, J.T., Kellermanns, E., Bowerman, J. & 
Lunde, K.B. (2012) Living fast and dying of infection: host life history drives 
interspecific variation in infection and disease risk. Ecology Letters, 15, 235–242. 

Karlsson, B. & Johansson, A. (2008) Seasonal polyphenism and developmental 
trade-offs between flight ability and egg laying in a pierid butterfly. Proceedings 
Biological sciences / The Royal Society, 275, 2131–2136. 

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. & Salzberg, S.L. (2013) 
TopHat2: accurate alignment of transcriptomes in the presence of insertions, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

deletions and gene fusions. Genome biology, 14, R36. 

Kraaijeveld, A. & Godfray, H. (1997) Trade-off between parasitoid resistance and 
larval competitive ability in Drosophila melanogaster. Nature, 389, 278–280. 

Laughton, A.M., Garcia, J.R., Altincicek, B., Strand, M.R. & Gerardo, N.M. (2011) 
Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. 
Journal of Insect Physiology, 57, 830–839. 

Lee, K.A., Wikelski, M., Robinson, W.D., Robinson, T.R. & Klasing, K.C. (2008) 
Constitutive immune defences correlate with life-history variables in tropical birds. 
The Journal of animal ecology, 77, 356–363. 

Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D. & Simpson, S.J. (2006) Flexible 
diet choice offsets protein costs of pathogen resistance in a caterpillar. 
Proceedings Biological sciences / The Royal Society, 273, 823–829. 

Liu, Q.-N., Zhu, B.-J., Wang, L., Wei, G.-Q., Dai, L.-S., Lin, K.-Z., Sun, Y., Qiu, J.-F., 
Fu, W.-W., Liu, C.-L. (2013) Identification of immune response-related genes in 
the Chinese oak silkworm, Antheraea pernyi by suppression subtractive 
hybridization. Journal of Invertebrate Pathology, 114, 313-323.  

Lively, C.M. (1999) Migration, virulence, and the geographic mosaic of adaptation by 
parasites. The American Naturalist, 153, S34–S47. 

Mackinnon, M.J. & Read, A.F. (2004) Immunity promotes virulence evolution in a 
malaria model. PLoS Biology, 2, E230. 

Martin, L.B., Weil, Z.M. & Nelson, R.J. (2007) Immune defense and reproductive 
pace of life in Peromyscus mice. Ecology, 88, 2516–2528. 

Márkus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., 
Kronhamn, J., Hultmark, D. & Andó, I. (2009) Sessile hemocytes as a 
hematopoietic compartment in Drosophila melanogaster. Proceedings Of The 
National Academy Of Sciences Of The United States Of America, 106, 4805–
4809. 

Mckean, K.A., Yourth, C.P., Lazzaro, B.P. & Clark, A.G. (2008) The evolutionary 
costs of immunological maintenance and deployment. BMC Evolutionary Biology, 
8, 76. 

Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K. & Relyea, R.A. (2005) 
Ecological consequences of phenotypic plasticity. Trends In Ecology & Evolution, 
20, 685–692. 

Moret, Y. & Schmid-Hempel, P. (2000) Survival for immunity: The price of immune 
system activation for bumblebee workers. Science (New York, NY), 290, 1166–
1168. 

Myers, J.H., Cory, J.S., Ericsson, J.D. & Tseng, M.L. (2011) The effect of food 
limitation on immunity factors and disease resistance in the western tent 
caterpillar. Oecologia, 167, 647–655. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Møller, A.P., Merino, S., Brown, C.R. & Robertson, R.J. (2001) Immune defense and 
host sociality: a comparative study of swallows and martins. The American 
Naturalist, 158, 136–145. 

Nishikori, K., Morioka, K., Kubo, T. & Morioka, M. (2009) Age- and morph-dependent 
activation of the lysosomal system and Buchnera degradation in aphid 
endosymbiosis. Journal of Insect Physiology, 55, 351–357. 

Papierok, B. & Hajek, A.E. (1997) Fungi: Entomophthorales. Manual of Techniques 
in Insect Pathology (ed L.A. Lacey) Academic Press. 

Parker, B.J., Garcia, J.R. & Gerardo, N.M. (2014) Genetic variation in resistance and 
fecundity tolerance in a natural host-pathogen interaction. Evolution, 68, 2421–
2429. 

Parker, B.J., Barribeau, S.M., Laughton, A.M. Griffin, L.H., and Gerardo, N.M. (2017) 
Data from: Life-history strategy determines constraints on immune function. 
Dryad Digital Repository http://dx.doi.org/10.5061/dryad.4kp7s 

Pfennig, D.W. & Collins, J.P. (1993) Kinship affects morphogenesis in cannibalistic 
salamanders. Nature, 362, 836–838. 

Sadd, B.M. & Schmid-Hempel, P. (2009) Principles of ecological immunology. 
Evolutionary Applications, 2, 113–121. 

Sadd, B.M. & Siva-Jothy, M.T. (2006) Self-harm caused by an insect's innate 
immunity. Proceedings Of The Royal Society Of London Series B-Biological 
Sciences, 273, 2571–2574. 

Schmid-Hempel, P. (2003) Variation in immune defence as a question of 
evolutionary ecology. Proceedings Of The Royal Society Of London Series B-
Biological Sciences, 270, 357–366. 

Schmitz, A., Anselme, C., Ravallec, M., Rebuf, C., Simon, J.-C., Gatti, J.-L. & Poirie, 
M. (2012) The Cellular Immune Response of the Pea Aphid to Foreign Intrusion 
and Symbiotic Challenge (ed K Michel). PLoS ONE, 7, e42114. 

Serbielle, C., Moreau, S., Veillard, F., Voldoire, E., Bézier, A., Mannucci, M.-A., 
Volkoff, A.-N., Drezen, J.-M., Lalmanach, G. & Huguet, E. (2009) Identification of 
parasite-responsive cysteine proteases in Manduca sexta. Biological chemistry, 
390, 493–502. 

Simms, E.L. & Rausher, M.D. (1987) Costs and benefits of plant resistance to 
herbivory. The American Naturalist. 

Simpson, S.J., Sword, G.A. & Lo, N. (2011) Polyphenism in insects. Current biology : 
CB, 21, R738–49. 

Siva-Jothy, M. & Thompson, J. (2002) Short-term nutrient deprivation affects 
immune function. Physiological Entomology, 27, 206–212. 

Sorrentino, R.P., Carton, Y. & Govind, S. (2002) Cellular immune response to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

parasite infection in the Drosophila lymph gland is developmentally regulated. 
Developmental biology, 243, 65–80. 

Sutherland, O. (1969) The role of crowding in the production of winged forms by two 
strains of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 15, 
1385–1410. 

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., 
Salzberg, S.L., Rinn, J.L. & Pachter, L. (2012) Differential gene and transcript 
expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature 
protocols, 7, 562–578. 

Tryselius, Y. & Hultmark, D. (1997) Cysteine proteinase 1 (CP1), a cathepsin L-like 
enzyme expressed in the Drosophila melanogaster haemocyte cell line mbn-2. 
Insect Molecular Biology, 6, 173–181. 

Valtonen, T.M., Kleino, A., Rämet, M. & Rantala, M.J. (2010) Starvation reveals 
maintenance cost of humoral immunity. Evolutionary Biology, 37, 49–57. 

Van Veen, F.J.F., Muller, C.B., Pell, J.K. & Godfray, H.C.J. (2008) Food web 
structure of three guilds of natural enemies: predators, parasitoids and 
pathogens of aphids. The Journal of animal ecology, 77, 191–200. 

Vass, E. & Nappi, A.J. (1998) The effects of dietary yeast on the cellular immune 
response of Drosophila melanogaster against the larval parasitoid, Leptopilina 
boulardi. Journal Of Parasitology, 84, 870–872. 

Vellichirammal, N.N., Madayiputhiya, N. & Brisson, J.A. (2016) The genome-wide 
transcriptional response underlying the pea aphid wing polyphenism. Molecular 
Ecology. 

Vilcinskas, A. & Götz, P. (1999) Parasitic fungi and their interactions with the insect 
immune system. Advances in parasitology, 43, 267–313. 

Wilson, A., Dunbar, H., Davis, G., Hunter, W., Stern, D. & Moran, N. (2006) A dual-
genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate 
bacterial symbiont, Buchnera aphidicola. BMC Genomics, 7, 50. 

Wilson, K. & Reeson, A.F. (1998) Density‐dependent prophylaxis: evidence from 
Lepidoptera–baculovirus interactions? Ecological Entomology, 23, 100–101. 

Wilson, K., Cotter, S.C., Reeson, A.F. & Pell, J.K. (2001) Melanism and disease 
resistance in insects. Ecology Letters, 4, 637–649. 

Wilson, K., Knell, R., Boots, M. & Koch Osborne, J. (2003) Group living and 
investment in immune defence: an interspecific analysis. Journal of Animal 
Ecology, 72, 133–143. 

Wilson, K., Thomas, M., Blanford, S., Doggett, M., Simpson, S. & Moore, S. (2002) 
Coping with crowds: Density-dependent disease resistance in desert locusts. 
Proceedings Of The National Academy Of Sciences Of The United States Of 
America, 99, 5471–5475. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Xia, J., Zhang, C.-R., Zhang, S., Li, F.-F., Feng, M.-G., Wang, X.-W. & Liu, S.-S. 
(2013) Analysis of whitefly transcriptional responses to Beauveria bassiana 
infection reveals new insights into insect-fungus interactions. PLoS ONE, 8, 
e68185. 

Zuk, M. & Stoehr, A.M. (2002) Immune defense and host life history. The American 
Naturalist, 160 Suppl 4, S9–S22. 

 

FIGURE AND TABLE LEGENDS 

Table 1) Results of the statistical analyses.  
 
Figure 1) Fecundity cost of exposure to heat-killed Pandora: Lifetime fecundity 
of unwinged aphids (left panel) and winged aphids (right panel) that were either 
stabbed with a needle dipped in sterile PBS (light grey) or with a needle dipped in a 
solution of PBS and heat-killed Pandora (dark grey). Boxes show the bootstrapped 
95% confidence estimates of lifetime fecundity.  
 
Figure 2) Susceptibility of morphs to live Pandora infection: A. Survival: 
Percent survival 8 days after Pandora infection of unwinged (left) and winged (right) 
aphids. Control aphids (unexposed) are shown in light grey, and exposed aphids are 
dark grey. Error bars show standard error of the mean. B. Percent Sporulation. The 
percent of aphids that produced a sporulating cadaver after Pandora infection of 
unwinged (left) and winged (right) aphids. No control aphids sporulated. Bars show 
+/- standard error. C. Pathogen load: log number of copies of Pandora 18S (in 50ng 
DNA) measured with qPCR for winged (dotted line, open circles) and unwinged 
(solid line, solid circles) aphids at 1-4 days after exposure.  
 
Figure 3) Cell counts: Relative concentration of immune cells in adult aphids 
(number of cells in 0.25μL hemolymph divided by the number of cells of control 
aphids for that morph). Unwinged aphids are shown on the left, winged aphids are 
shown on the right. A. Cellular immunity after heat-killed pathogen exposure: 
Mean relative immune cell concentration ± SE in control (not stabbed) aphids (light 
grey), aphids stabbed with a needle dipped in sterile PBS (medium grey), or with a 
needle dipped in a solution of PBS and heat-killed Pandora (dark grey) 24 hr after 
exposure. B. Cellular immunity after live infection: Mean relative immune cell 
concentrations ± SE of control (light grey) and Pandora exposed (dark grey) aphids 
96 hours after exposure.  
 
Figure 4) Immune gene expression: Mean relative fold change ± SE of Pandora 
infected vs. control aphids. Differential expression was measured for winged (dotted 
lines) and unwinged (solid) lines at three time points after Pandora exposure (12 hrs, 
24 hrs, and 48 hrs). Asterisks indicate statistically significant differences, as 
determined by the interaction effect between morph and treatment at each time-point 
(* < 0.05, ** < 0.01, *** < 0.001). The ACYPI gene IDs are shown just under the gene 
names. A. The top figure shows expression for nine genes found to be significantly 
differentially expressed in the transcriptome. B. The bottom figure shows expression 
for Cathepsin L, which was not found to be statistically significantly differentially 
expressed in the transcriptome.  
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SUPPLEMENTARY FILES 
 
Supplementary File 1: Contains Supplementary Information A – J, including 
supplementary figures SA – SJ and supplementary tables S1 – S2.  
 
Supplementary File 2: Contains complete list of significantly differentially expressed 
genes, with ACYPI annotations, from the transcriptomics work.  
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Table 1: Results of the statistical analyses.   
 Test Statistic d.f. p 
Cost of Exposure 
     Morph F = 113 1 p < 0.0001
     Treatment F = 5.33 1 p = 0.02
     Genotype F = 69.6 2 p < 0.0001
     Morph * Treatment F = 6.87 1 p = 0.009
     Morph * Genotype F = 11.2 2 p < 0.0001
     Treatment * Genotype  F = 1.25 2 p = 0.28 
     Morph * Treatment * Genotype F = 0.076 2 p = 0.92 
Cost of Exposure – Post-hoc comparisons
     Unwinged Control vs. Unwinged Fungus N.S. 
     Unwinged Control vs. Winged Control p < 0.001
     Winged Control vs. Winged Fungus p < 0.05
Survival to 9 days after live infection 
     Morph χ2 = 13.3 1 p < 0.0001
     Treatment χ2 = 64.7 1 p < 0.0001
     Genotype χ2 = 17.0 2 p = 0.0002
     Morph * Treatment χ2 = 7.08 1 p = 0.0080
     Morph * Genotype χ2 = 3.59 2 p = 0.16 
     Treatment * Genotype χ2 = 4.06 2 p = 0.13 
     Morph * Treatment * Genotype χ2 = 1.04 2 p = 0.59 
Sporuation by 9 days after live infection
     Morph χ2 = 27.6 1 p < 0.0001
     Genotype χ2 = 20.1 2 p < 0.0001
     Morph * Genotype χ2 = 5.66 2 p = 0.06 
Pathogen Load 
     Morph F = 6.76 1 p = 0.01
     Day F = 63.4 1 p < 0.0001
     Genotype F = 6.30 2 p = 0.0045
     Morph * Day F = 0.16 1 p = 0.688 
     Morph * Genotype F = 2.80 2 p = 0.742 
     Day * Genotype  F = 0.09 2 p = 0.916 
     Morph * Day * Genotype F = 0.23 2 p = 0.797 
Cell concentration after heat-killed challenge 
     Morph F = 11.4 1 p = 0.0015
     Treatment F = 11.5 2 p < 0.0001
     Morph * Treatment F = 7.96 2 p = 0.0011
Cell concentrations after live infection (96hrs) 
     Morph F = 2.09 1 p = 0.16 
     Treatment F = 8.75 1 p = 0.0066
     Morph * Treatment F = 15.6 1 p = 0.00056   
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