The synchronous dynamics and the stationary states of a recurrent attractor
neural network model with competing synapses between symmetric sequence
processing and Hebbian pattern reconstruction is studied in this work allowing
for the presence of a self-interaction for each unit. Phase diagrams of
stationary states are obtained exhibiting phases of retrieval, symmetric and
period-two cyclic states as well as correlated and frozen-in states, in the
absence of noise. The frozen-in states are destabilised by synaptic noise and
well separated regions of correlated and cyclic states are obtained. Excitatory
or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic
behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and
Theoretica