131 research outputs found

    Movers and shakers: Granular damping in microgravity

    Full text link
    The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics mulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. The granular damper behaves like a frictional damper and a linear decay of the amplitude is bserved. This is true even for the simulation model, where friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.Comment: 9 pages, 9 figure

    Chemical Imaging of Buried Interfaces in Organic-Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry

    Get PDF
    Copyright © 2019 American Chemical Society. Organic-inorganic hybrid materials enable the design and fabrication of new materials with enhanced properties. The interface between the organic and inorganic materials is often critical to the device's performance; therefore, chemical characterization is of significant interest. Because the interfaces are often buried, milling by focused ion beams (FIBs) to expose the interface is becoming increasingly popular. Chemical imaging can subsequently be obtained using secondary-ion mass spectrometry (SIMS). However, the FIB milling process damages the organic material. In this study, we make an organic-inorganic test structure to develop a detailed understanding of the processes involved in FIB milling and SIMS imaging. We provide an analysis methodology that involves a "clean-up" process using sputtering with an argon gas cluster ion source to remove the FIB-induced damage. The methodology is evaluated for two additive manufactured devices, an encapsulated strain sensor containing silver tracks embedded in a polymeric material and a copper track on a flexible polymeric substrate created using a novel nanoparticle sintering technique

    Business networks and localization effects for new Swedish technology-based firms’ innovation performance

    Get PDF
    This study examines the business networks and localization effects for new technology-based firms (NTBFs) in the context of innovation performance (the number of patents and product differentiation). In this regard, the study includes 28 variables. A survey was conducted in 2016 with 401 Swedish NTBFs that were small and young (the employment mean was 1.80 and the average age of each firm was 28.3\ua0months). The biggest category of NTBFs was knowledge-intensive high-technology services, followed by medium high-technology manufacturing, and high-technology manufacturing. Hypotheses on how business networks and localization are related to innovation performance were tested using principal component analysis, correlation analysis, and regression analysis. The results show that the primary significant factor for innovation performance regarding business networks and localization dimensions are professional network services, while industrial and regional areas also have a positive relationship on product differentiation. Our study also shows that innovation performance enhances firms’ abilities to access external financing through professional network services (e.g., venture capital companies)

    Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Get PDF
    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed

    The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power

    Get PDF
    We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; under 200 nm for inorganic species and under 2 μm for biomolecules) with the high mass-resolving power of an Orbitrap (>240,000 at m/z 200). This allows exogenous and endogenous metabolites to be visualized in 3D with subcellular resolution. We imaged the distribution of neurotransmitters—gamma-aminobutyric acid, dopamine and serotonin—with high spectroscopic confidence in the mouse hippocampus. We also putatively annotated and mapped the subcellular localization of 29 sulfoglycosphingolipids and 45 glycerophospholipids, and we confirmed lipid identities with tandem mass spectrometry. We demonstrated single-cell metabolomic profiling using rat alveolar macrophage cells incubated with different concentrations of the drug amiodarone, and we observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone

    The molecular lifecycle of amyloid – Mechanism of assembly, mesoscopic organisation, polymorphism, suprastructures, and biological consequences

    Get PDF
    The formation of a diverse range of amyloid structures from normally soluble proteins and peptides is a hallmark of devastating human disorders as well as biological functions. The current molecular understanding of the amyloid lifecycle reveals four processes central to their growth and propagation: primary nucleation, elongation, secondary nucleation and division. However, these processes result in a wide range of cross-β packing and filament arrangements, including diverse assemblies formed from identical monomeric precursors with the same amino acid sequences. Here, we review current structural and mechanistic understanding of amyloid self-assembly, and discuss how mesoscopic, i.e. micrometre to nanometre, organisation of amyloid give rise to suprastructural features that may be the key link between the polymorphic amyloid structures and the biological response they elicit. A greater understanding of the mechanisms governing suprastructure formation will guide future strategies to combat amyloid associated disorders and to use and control the amyloid quaternary structure in synthetic biology and materials applications
    corecore