63 research outputs found

    Magnetic Confinement, MHD Waves, and Smooth Line Profiles in AGN

    Get PDF
    In this paper, we show that if the broad line region clouds are in approximate energy equipartition between the magnetic field and gravity, as hypothesized by Rees, there will be a significant effect on the shape and smoothness of broad emission line profiles in active galactic nuclei. Line widths of contributing clouds or flow elements are much wider than their thermal widths, due to the presence of non-dissipative MHD waves, and their collective contribution produce emission line profiles broader and smoother than would be expected if a magnetic field were not present. As an illustration, a simple model of isotropically emitting clouds, normally distributed in velocity, is used to show that smoothness can be achieved for less than 80,000 clouds and may even be as low as a few hundred. We conclude that magnetic confinement has far reaching consequences for observing and modeling active galactic nuclei.Comment: to appear in MNRA

    Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants

    Get PDF
    Pulsars, formed during supernova explosions, are known to be sources of relativistic magnetized winds whose interaction with the expanding supernova remnants (SNRs) gives rise to a pulsar wind nebula (PWN). We present spherically symmetric relativistic magnetohydrodynamics (RMHD) simulations of the interaction of a pulsar wind with the surrounding SNR, both in particle and magnetically dominated regimes. As shown by previous simulations, the evolution can be divided in three phases: free expansion, a transient phase characterized by the compression and reverberation of the reverse shock, and a final Sedov expansion. The evolution of the contact discontinuity between the PWN and the SNR (and consequently of the SNR itself) is almost independent of the magnetization of the nebula as long as the total (magnetic plus particle) energy is the same. However, a different behaviour of the PWN internal structure is observable during the compression-reverberation phase, depending on the degree of magnetization=2E The simulations were performed using the third order conservative scheme by Del Zanna et al. (2003).Comment: 11 pages, Latex, 22 Encapsulated PostScript figures, accepted f or publication on A&

    The effects of spin-down on the structure and evolution of pulsar wind nebulae

    Get PDF
    We present high resolution spherically symmetric relativistic magnetohydrodynamical simulations of the evolution of a pulsar wind nebula inside the free expanding ejecta of the supernova progenitor. The evolution is followed starting from a few years after the supernova explosion and up to an age of the remnant of 1500 years. We consider different values of the pulsar wind magnetization parameter and also different braking indices for the spin-down process. We compare the numerical results with those derived through an approximate semi-analytical approach that allows us to trace the time evolution of the positions of both the pulsar wind termination shock and the contact discontinuity between the nebula and the supernova ejecta. We also discuss, whenever a comparison is possible, to what extent our numerical results agree with former self-similar models, and how these models could be adapted to take into account the temporal evolution of the system. The inferred magnetization of the pulsar wind could be an order of magnitude lower than that derived from time independent analytic models.Comment: 11 pages, 7 figures, Accepted for publication on A&

    Ubiquitous equatorial accretion disc winds in black hole soft states

    Full text link
    High resolution spectra of Galactic Black Holes (GBH) reveal the presence of highly ionised absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are an ubiquitous component of the jet-free soft states of all GBH. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionisation and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds, and their presence ubiquitously during the soft X-ray states suggests they are fundamental components of the accretion phenomenon.Comment: Accepted for publication in MNRAS Letter

    Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    Full text link
    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disk wind somewhat more challenging and should be considered in future wind simulations.Comment: 14 pages, 8 figures. Accepted for publication by MNRA

    The formation of broad emission line regions in supernova-QSO wind interactions: II. 2D calculations

    Get PDF
    One aspect of supernova remnant evolution that is relatively unstudied is the influence of an AGN environment. A high density ambient medium and a nearby powerful continuum source will assist the cooling of shocked ejecta and swept-up gas. Motion of the surrounding medium relative to the remnant will also affect the remnant morphology. In an extension to previous work we have performed 2D hydrodynamical calculations of SNR evolution in an AGN environment, and have determined the evolutionary behaviour of cold gas in the remnant. The cold gas will contribute to the observed broad line emission in AGNs, and we present preliminary theoretical line profiles from our calculations. A more detailed comparison with observations will be performed in future work. The SNR-AGN interaction may be also useful as a diagnostic of AGN winds

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke

    A Variable-Density Absorption Event in NGC 3227 mapped with Suzaku and Swift

    Full text link
    The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of Active Galactic Nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV Broad Line Region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. We examine six Suzaku and twelve Swift observations from a 2008 campaign spanning 5 weeks. We use a model accounting for the complex spectral interplay of three differently-ionized absorbers. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR-to-X-ray spectral energy distribution (SED) to test for reddening by dust. The 2008 absorption event is due to moderately-ionized (logξ1.21.4\log \xi\sim 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.Comment: Accepted for publication by A&

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm
    corecore