80 research outputs found

    EPR studies of manganese centers in SrTiO3: Non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers

    Full text link
    X- and Q-band electron paramagnetic resonance (EPR) study is reported on the SrTiO3 single crystals doped with 0.5-at.% MnO. EPR spectra originating from the S = 2 ground state of Mn3+ ions are shown to belong to the three distinct types of Jahn-Teller centres. The ordering of the oxygen vacancies due to the reduction treatment of the samples and consequent formation of oxygen vacancy associated Mn3+ centres are explained in terms of the localized charge compensation. The EPR spectra of SrTiO3: Mn crystals show the presence of next nearest neighbor exchange coupled Mn4+ pairs in the directions.Comment: 17 pages, 8 figure

    A Validated Software Application to Measure Fiber Organization in Soft Tissue

    Get PDF
    The mechanical behavior of soft connective tissue is governed by a dense network of fibrillar proteins in the extracellular matrix. Characterization of this fibrous network requires the accurate extraction of descriptive structural parameters from imaging data, including fiber dispersion and mean fiber orientation. Common methods to quantify fiber parameters include fast Fourier transforms (FFT) and structure tensors, however, information is limited on the accuracy of these methods. In this study, we compared these two methods using test images of fiber networks with varying topology. The FFT method with a band-pass filter was the most accurate, with an error of 0.71 ± 0.43 degrees in measuring mean fiber orientation and an error of 7.4 ± 3.0% in measuring fiber dispersion in the test images. The accuracy of the structure tensor method was approximately 4 times worse than the FFT bandpass method when measuring fiber dispersion. A free software application, FiberFit, was then developed that utilizes an FFT band-pass filter to fit fiber orientations to a semicircular von Mises distribution. FiberFit was used to measure collagen fibril organization in confocal images of bovine ligament at magnifications of 63x and 20x. Grayscale conversion prior to FFT analysis gave the most accurate results, with errors of 3.3 ± 3.1 degrees for mean fiber orientation and 13.3 ± 8.2% for fiber dispersion when measuring confocal images at 63x. By developing and validating a software application that facilitates the automated analysis of fiber organization, this study can help advance a mechanistic understanding of collagen networks and help clarify the mechanobiology of soft tissue remodeling and repair

    Medication availability and economic barriers to adherence in asthma and COPD patients in low-resource settings

    Get PDF
    Inhaled medication is essential to control asthma and COPD, but availability and proper adherence are challenges in low-middle income countries (LMIC). Data on medication availability and adherence in Central Asia are lacking. We aimed to investigate the availability of respiratory medication and the extent of financially driven non-adherence in patients with COPD and asthma in Kyrgyzstan. A cross-sectional study was conducted in two regions of Kyrgyzstan. Patients with a physician- and spirometry confirmed diagnosis of asthma and/or COPD were included. The main outcomes were (1) availability of respiratory medication in hospitals and pharmacies, assessed by a survey, and (2) medication adherence, assessed by the Test of Adherence to Inhalers (TAI). Logistic regression analyses were used to identify predictors for adherence. Of the 300 participants (COPD: 264; asthma: 36), 68.9% were buying respiratory medication out-of-pocket. Of all patients visiting the hospital, almost half reported medication not being available. In pharmacies, this was 8%. Poor adherence prevailed over intermediate and good adherence (80.7% vs. 12.0% and 7.3%, respectively). Deliberate and erratic non-adherence behavior patterns were the most frequent (89.7% and 88.0%), followed by an unconscious non-adherent behavioral pattern (31.3%). In total, 68.3% reported a financial reason as a barrier to proper adherence. Low BMI was the only factor significantly associated with good adherence. In this LMIC population, poor medication availability was common and 80% were poorly adherent. Erratic and deliberate non-adherent behaviors were the most common pattern and financial barriers play a role in over two-thirds of the population.Public Health and primary carePrevention, Population and Disease management (PrePoD

    Systematic Review of Physical Activity, Sedentary Behaviour and Sleep Among Adults Living with Chronic Respiratory Disease in Low- and Middle-Income Countries.

    Get PDF
    ABSTRACT: Physical activity (PA), sedentary behaviour (SB) and sleep are important lifestyle behaviours associated with chronic respiratory disease (CRD) morbidity and mortality. These behaviours need to be understood in low- and middle-income countries (LMIC) to develop appropriate interventions. PURPOSE: Where and how have free-living PA, SB and sleep data been collected for adults living with CRD in LMIC? What are the free-living PA, SB and sleep levels of adults living with CRD? PATIENTS AND METHODS: The literature on free-living PA, SB and sleep of people living with CRD in LMIC was systematically reviewed in five relevant scientific databases. The review included empirical studies conducted in LMIC, reported in any language. Reviewers screened the articles and extracted data on prevalence, levels and measurement approach of PA, SB and sleep using a standardised form. Quality of reporting was assessed using bespoke criteria. RESULTS: Of 89 articles, most were conducted in Brazil (n=43). PA was the commonest behaviour measured (n=66). Questionnaires (n=52) were more commonly used to measure physical behaviours than device-based (n=37) methods. International Physical Activity Questionnaire was the commonest for measuring PA/SB (n=11). For sleep, most studies used Pittsburgh Sleep Quality Index (n=18). The most common ways of reporting were steps per day (n=21), energy expenditure (n=21), sedentary time (n=16), standing time (n=13), sitting time (n=11), lying time (n=10) and overall sleep quality (n=32). Studies revealed low PA levels [steps per day (range 2669–7490steps/day)], sedentary lifestyles [sitting time (range 283–418min/day); standing time (range 139–270min/day); lying time (range 76–119min/day)] and poor sleep quality (range 33–100%) among adults with CRD in LMIC. CONCLUSION: Data support low PA levels, sedentary lifestyles and poor sleep among people in LMIC living with CRDs. More studies are needed in more diverse populations and would benefit from a harmonised approach to data collection for international comparisons

    Optical follow-up of the neutron star-black hole mergers S200105ae and S200115j

    Get PDF
    LIGO and Virgo’s third observing run revealed the first neutron star–black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements1,2 creating optical/near-infrared ‘kilonova’ emission. The joint gravitational wave and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter3, and independently measure the local expansion rate of the Universe4. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility5. The Zwicky Transient Facility observed ~48% of S200105ae and ~22% of S200115j’s localization probabilities, with observations sensitive to kilonovae brighter than −17.5 mag fading at 0.5 mag d−1 in the g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art kilonova models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with observed depths of apparent magnitude ~22 mag, attainable in metre-class, wide-field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high black hole spins and large neutron star radii

    The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

    Full text link
    This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model’s strong aerosol-related effective radiative forcing (ERFari+aci = -1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).Plain Language SummaryThe U.S. Department of Energy funded the development of a new state-of-the-art Earth system model for research and applications relevant to its mission. The Energy Exascale Earth System Model version 1 (E3SMv1) consists of five interacting components for the global atmosphere, land surface, ocean, sea ice, and rivers. Three of these components (ocean, sea ice, and river) are new and have not been coupled into an Earth system model previously. The atmosphere and land surface components were created by extending existing components part of the Community Earth System Model, Version 1. E3SMv1’s capabilities are demonstrated by performing a set of standardized simulation experiments described by the Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima protocol at standard horizontal spatial resolution of approximately 1° latitude and longitude. The model reproduces global and regional climate features well compared to observations. Simulated warming between 1850 and 2015 matches observations, but the model is too cold by about 0.5 °C between 1960 and 1990 and later warms at a rate greater than observed. A thermodynamic analysis of the model’s response to greenhouse gas and aerosol radiative affects may explain the reasons for the discrepancy.Key PointsThis work documents E3SMv1, the first version of the U.S. DOE Energy Exascale Earth System ModelThe performance of E3SMv1 is documented with a set of standard CMIP6 DECK and historical simulations comprising nearly 3,000 yearsE3SMv1 has a high equilibrium climate sensitivity (5.3 K) and strong aerosol-related effective radiative forcing (-1.65 W/m2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/1/jame20860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/2/jame20860.pd

    GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger

    Get PDF
    On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg2 at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M ej < 0.04 M o˙ at polar viewing angles, or M ej < 0.03 M o˙ if the opacity is κ < 2 cm2g-1. Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be χ < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs. © 2020. The American Astronomical Society

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻²⁵ yr⁻¹. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore