27 research outputs found

    Flight model characterization of the wide-field off-axis telescope for the MATS satellite

    Full text link
    We present optical characterization, calibration, and performance tests of the Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS) satellite, which for the first time for a satellite applies a linear-astigmatism-free confocal off-axis reflective optical design. Mechanical tolerances of the telescope were investigated using Monte-Carlo methods and single-element perturbations. The sensitivity analysis results indicate that tilt errors of the tertiary mirror and a surface RMS error of the secondary mirror mainly degrade optical performance. From the Monte-Carlo simulation, the tolerance limits were calculated to ±\pm0.5 mm, ±\pm1 mm, and ±\pm0.15∘^\circ for decenter, despace, and tilt, respectively. We performed characterization measurements and optical tests with the flight model of the satellite. Multi-channel relative pointing, total optical system throughput, and distortion of each channel were characterized for end-users. Optical performance was evaluated by measuring modulation transfer function (MTF) and point spread function (PSF). The final MTF performance is 0.25 MTF at 20 lp/mm for the ultraviolet channel (304.5 nm), and 0.25 - 0.54 MTF at 10 lp/mm for infrared channels. The salient fact of the PSF measurement of this system is that there is no noticeable linear astigmatism detected over wide field of view (5.67∘^\circ ×\times 0.91∘^\circ). All things considered, the design method showed great advantages in wide field of view observations with satellite-level optical performance.Comment: 21 pages, 11 figure

    Simultaneous in Situ Measurements of Small-Scale Structures in Neutral, Plasma, and Atomic Oxygen Densities During the WADIS Sounding Rocket Project

    Get PDF
    In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties

    A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere

    Get PDF
    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75–105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice–Ramsperger–Kassel–Markus theory are used to show that even small Fe–Mg–silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm−3 prevents the formation of stable negative ions

    Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation

    Get PDF
    The paper presents a feasible method to complement ground-based middle atmospheric Rayleigh lidar temperature observations with numerical simulations in the lower stratosphere and troposphere to study gravity waves. Validated mesoscale numerical simulations are utilized to complement the temperature below 30-km altitude. For this purpose, high-temporal-resolution output of the numerical results was interpolated on the position of the lidar in the lee of the Scandinavian mountain range. Two wintertime cases of orographically induced gravity waves are analyzed. Wave parameters are derived using a wavelet analysis of the combined dataset throughout the entire altitude range from the troposphere to the mesosphere. Although similar in the tropospheric forcings, both cases differ in vertical propagation. The combined dataset reveals stratospheric wave breaking for one case, whereas the mountain waves in the other case could propagate up to about 40-km altitude. The lidar observations reveal an interaction of the vertically propagating gravity waves with the stratopause, leading to a stratopause descent in both cases

    Long-term lidar observations of wintertime gravity wave activity over northern Sweden

    Get PDF
    This paper presents an analysis of gravity wave activity over northern Sweden as deduced from 18 years of wintertime lidar measurements at Esrange (68� N, 21� E). Gravity wave potential energy density (GWPED) was used to characterize the strength of gravity waves in the altitude regions 30–40 km and 40–50 km. The obtained values exceed previous observations reported in the literature. This is suggested to be due to Esrange’s location downwind of the Scandinavian mountain range and due to differences in the various methods that are currently used to retrieve gravity wave parameters. The analysis method restricted the identification of the dominating vertical wavelengths to a range from 2 to 13 km. No preference was found for any wavelength in this window. Monthly mean values of GWPED show that most of the gravity waves’ energy dissipates well below the stratopause and that higher altitude regions show only small dissipation rates of GWPED. Our analysis does not reproduce the previously reported negative trend in gravity wave activity over Esrange. The observed interannual variability of GWPED is connected to the occurrence of stratospheric warmings with generally lower wintertime mean GWPED during years with major stratospheric warmings.A bimodal GWPED occurrence frequency indicates that gravity wave activity at Esrange is affected by both ubiquitouswave sources and orographic forcing
    corecore