31 research outputs found

    Medication and suicide risk in schizophrenia: A nested case-control study

    No full text
    Introduction: Patients with schizophrenia are at increased risk of suicide, but data from controlled studies of pharmacotherapy in relation to suicide risk is limited. Aim: To explore suicide risk in schizophrenia in relation to medication with antipsychotics, antidepressants, and lithium. Methods: Of all patients with a first clinical discharge diagnosis of schizophrenia or schizoaffective disorder in Stockholm County between 1984 and 2000 (n=4000), patients who died by suicide within five years from diagnosis were defined as cases (n=84; 54% male). Individually matched controls were identified from the same population. Information on prescribed medication was retrieved from psychiatric records in a blinded way. Adjusted odds ratios [OR] of the association between medication and suicide were calculated by conditional logistic regression. Results: Lower suicide risk was found in patients who had been prescribed a second generation antipsychotic (clozapine, olanzapine, risperidone, or ziprasidone; 12 cases and 20 controls): OR 0.29 (95% confidence interval [CI], 0.09-0.97). When the 6 cases and 8 controls who had been prescribed clozapine were excluded, the OR was 0.23 (95% CI 0.06-0.89). No significant association was observed between suicide and prescription of any antipsychotic, depot injection antipsychotics, antidepressants, SSRI, or lithium. Conclusions: Lower suicide risk for patients who had been prescribed second generation antipsychotics may be related to a pharmacological effect of these drugs, to differences in adherence, or to differences in other patient characteristics associated with lower suicide risk. © 2013 Elsevier B.V

    Large‐scale collaboration in ENIGMA‐EEG: A perspective on the meta‐analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity.

    Get PDF
    Background and purpose The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. Methods We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. Results We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. Conclusion The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Subcortical volumes across the lifespan: data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.Education and Child Studie

    Suicide risk and antipsychotic side effects in schizophrenia: nested case–control study

    No full text
    Objective: This study explores suicide risk in schizophrenia in relation to side effects from antipsychotic medication. Methods: Among patients with a first clinical discharge diagnosis of schizophrenia or schizoaffective disorder in Stockholm County between 1984 and 2000 (n = 4000), those who died by suicide within 5 years from diagnosis were defined as cases (n = 84; 54% male). For each case, one individually matched control was identified from the same population. Information on antipsychotic side effects, including extrapyramidal symptoms (EPS) and akathisia, as well as prescriptions of anticholinergic medication, was retrieved from clinical records in a blinded fashion. Adjusted odds ratios (aORs) with 95% confidence intervals (CIs) of the association between suicide and side effects as well as anticholinergic medication were estimated using conditional logistic regression. Results: A lower suicide risk was found in patients with a history of EPS (aOR 0.33, 95% CI 0.12–0.94). There was no statistically significant association between akathisia or anticholinergic medication use and the suicide risk. Conclusions: A lower suicide risk identified among patients with EPS could potentially reflect higher antipsychotic adherence, exposure to higher dosage, or polypharmacy among these patients. © 2016 John Wiley & Sons, Ltd

    Cardiac left ventricular ejection fraction in men and women with schizophrenia on long-term antipsychotic treatment

    No full text
    Patients with schizophrenia exhibit a higher cardiovascular mortality compared to the general population which has been attributed to life-style factors, genetic susceptibility and antipsychotic medication. Recent echocardiographic studies have pointed to an association between clozapine treatment and reduced left ventricular ejection fraction (LVEF), a measure that has been inversely associated with adverse outcomes including all-cause mortality. Cardiovascular magnetic resonance (CMR) is considered the reference method for LVEF measurement. The aim of the present study was to investigate the LVEF in patients with schizophrenia on long-term treatment with antipsychotics and healthy controls. Twenty-nine adult patients with schizophrenia on long-term medication with antipsychotics and 27 age-, sex- and body mass index-matched healthy controls (mean ages 44 and 45 years, respectively) were recruited from outpatient psychiatric clinics in Uppsala, Sweden. The participants were interviewed and underwent physical examination, biochemical analyses, electrocardiogram and CMR. Men with schizophrenia on long-term antipsychotic treatment showed significantly lower LVEF than controls (p = 0.0076), whereas no such difference was evident among women (p = 0.44). Specifically, clozapine-treated male patients had 10.6% lower LVEF than male controls (p = 0.0064), whereas the LVEF was 5.5% below that of controls among male patients treated with non-clozapine antipsychotics (p = 0.047). Among medicated men with schizophrenia, we found significantly lower LVEF compared to healthy individuals, suggesting the need of routine cardiac monitoring in this patient group. This is the first study showing a significant negative association between treatment with non-clozapine antipsychotics and LVEF. © 2020 The Author
    corecore