94 research outputs found

    The purification and characterisation of novel dipeptidyl peptidase IV-like activity from bovine serum

    Get PDF
    The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158 kDa while Size Exclusion Chromatography generated a native molecular mass of 328 kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and Isoelectric Focusing revealed the enzyme’s isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by Bestatin. Substrate Specificity studies proved that the enzyme is capable of sequential cleavage of bovine β- Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a KM of 38.4 μM, while Lys-Pro-MCA was hydrolysed with a KM of 103 μM. The DPIV- like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a Ki of 1.4x10-4 M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7x10-7 M and 7.5x10-7 M respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation

    Autoimmune Responses in the Rheumatoid Synovium

    Get PDF
    Rene Toes and Tom Huizinga discuss a new study indicating that lymphoneogenesis in the inflamed synovial tissue of patients with rheumatoid arthritis is fostering potentially pathogenic immune responses

    Overexpression of a Minimal Domain of Calpastatin Suppresses IL-6 Production and Th17 Development via Reduced NF-κB and Increased STAT5 Signals

    Get PDF
    Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a candidate treatment for inflammatory diseases such as RA

    Antigen-Specific Blocking of CD4-Specific Immunological Synapse Formation Using BPI and Current Therapies for Autoimmune Diseases

    Get PDF
    This is the peer reviewed version of the following article: Manikwar, P., Kiptoo, P., Badawi, A. H., Büyüktimkin, B. and Siahaan, T. J. (2012), Antigen-specific blocking of CD4-Specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev, 32: 727–764. doi:10.1002/med.20243, which has been published in final form at http://doi.org/10.1002/med.20243. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a “bull’s eye”-like formation of the immunological synapse (IS) at the T-cell–APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from TH1 to Treg and/or TH2 phenotypes, leading to tolerance

    Does human attractin have DP4 activity?

    No full text
    corecore