12 research outputs found

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Minimal anonimized SLCMV diagnostics data in Cambodia and Vietnam in 2016

    No full text
    The data includes diagnosis results of Sri Lankan cassava mosaic virus (SLCMV) from binational surveys of 15 districts in Vietnam and 16 districts in Cambodia, with 240 samples by district

    Minimal anonimized SLCMV diagnostics data in Cambodia and Vietnam in 2016

    No full text
    The data includes diagnosis results of Sri Lankan cassava mosaic virus (SLCMV) from binational surveys of 15 districts in Vietnam and 16 districts in Cambodia, with 240 samples by district

    Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015

    No full text
    Cassava mosaic disease, one of the ten most economically important crop viral diseases in the world, was first reported in Southeast Asia from a single plantation in Cambodia in 2015. To determine the presence and incidence of Sri Lankan cassava mosaic virus (SLCMV) one year after first detection, a total of 6,480 samples from 419 fields were systematically collected from cassava production areas across Cambodia (3,840 samples; 240 fields) and Vietnam (2,640samples; 179 fields) in the 2016 cropping season. Using PCR-based diagnostics, we identified 49 SLCMV-infected plants from nine fields, representing 2% of the total number of fields sampled. Infected fields were geographically restricted to two provinces of Eastern Cambodia, while no infection was detected from any of the other sampled sites in either country. Symptom expression patterns in infected plants suggested that SLCMV may have been transmitted both through infected planting materials, and by Bemisia tabaci, the known whitefly vector of SLCMV. In addition, 14% of virus infected plants did not express typical symptoms of cassava mosaic disease on their leaves, highlighting that molecular-based validation is needed to confirm the presence of SLCMV in the field. None of the owners of the SLCMV-infected fields indicated acquired planting materials from the plantation in Ratanakiri where SLCMV was first reported. The surveillance baseline data generated for both countries is discussed in light of future options to control and manage cassava mosaic disease

    Farmer surveys in Cambodia and Vietnam: cassava planting material use and exchange at national level with 4 district-level case studies

    No full text
    The data includes national surveys of 15 districts in Vietnam and 16 districts in Cambodia, with 15 responses by district. Districts were selected based on high cassava production density and expert input from local government officials. National surveys covered the following themes: (a) respondent information, (b) seed use overview, and (c) field and household data. In addition to the aforementioned categories, the subnational surveys collected data on (d) quality, (e) affordability/profitability, and (f) information sources

    Farmer surveys in Cambodia and Vietnam: cassava planting material use and exchange at national level with 4 district-level case studies

    No full text
    The data includes national surveys of 15 districts in Vietnam and 16 districts in Cambodia, with 15 responses by district. Districts were selected based on high cassava production density and expert input from local government officials. National surveys covered the following themes: (a) respondent information, (b) seed use overview, and (c) field and household data. In addition to the aforementioned categories, the subnational surveys collected data on (d) quality, (e) affordability/profitability, and (f) information sources

    Raising the Stakes: Cassava Seed Networks at Multiple Scales in Cambodia and Vietnam

    Get PDF
    Cassava is one of the most important annual crops in Southeast Asia, and faces increasing seed borne pest and disease pressures. Despite this, cassava seed systems have received scant research attention. In a first analysis of Vietnamese and Cambodian cassava seed systems, we characterized existing cassava seed systems in 2016–2017 through a farmer survey based approach at both national and community scales, with particular focus on identifying seed system actors, planting material management, exchange mechanisms, geographies, and variety use, and performed a network analysis of detected seed movement at the provincial level. Despite their status as self-organized “informal” networks, the cassava seed systems used by farmers in Vietnam and Cambodia are complex, connected over multiple scales, and include links between geographically distant sites. Cassava planting material was exchanged through farmer seed systems, in which re-use of farm-saved supply and community-level exchanges dominated. At the national level, use of self-saved seed occurred in 47 and 64% of seed use cases in Cambodia and Vietnam, respectively. Movement within communes was prevalent, with 82 and 78% of seed provided to others being exchanged between family and acquaintances within the commune in Cambodia and Vietnam, respectively. Yet, meaningful proportions of seed flows, mediated mostly by traders, also formed inter-provincial and international exchange networks, with 20% of Cambodia's seed acquisitions imported from abroad, especially neighboring Vietnam and Thailand. Dedicated seed traders and local cassava collection points played important roles in the planting material distribution network at particular sites. Sales of planting material were important means of both acquiring and providing seed in both countries, and commercial sale was more prevalent in high-intensity than in low-intensity production sites. Considerable variability existed in local seed networks, depending on the intensity of production and integration with trader networks. Adapted innovations are needed to upgrade cassava seed systems in the face of emerging pests and diseases, taking into account and building on the strengths of the existing systems; including their social nature and ability to quickly and efficiently distribute planting materials at the regional level

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
    corecore