220 research outputs found

    Diatoms (an ecoregional indicator of nutrients, organic mater and micropollutants pollution)

    Get PDF
    Les diatomées sont des microalgues ubiquistes d'une diversité exceptionnelle. Cela en fait de bons indicateurs de la qualité des écosystèmes aquatiques et sont utilisées depuis plus de 50 ans. Depuis l'année 2000, la Directive Cadre Européenne sur l'Eau impose leur utilisation pour évaluer la qualité écologique des cours d'eau. Un cadre typologique doit être utilisé afin de comparer des rivières comparables entre elles, c'est-à-dire des rivières de mêmes régions bioclimatiques, coulant sur les mêmes substrats géologiques et à des altitudes comparables. Différentes classifications écorégionales ont été définies sur la base de ces paramètres. Nous avons montré qu'à une échelle couvrant 4 pays (Espagne, France, Italie, Suisse) et à une régionale (Nord-est de la France), les écorégions et la géologie sont déterminantes pour expliquer les communautés. Les paramètres caractérisant la pollution sont moins importants. Contrairement à certains auteurs, nous n'avons pas observé d'homogénéisation des communautés lorsque le niveau de pollution augmente. D'autre part nous n'avons pas observé de communautés restreintes géographiquement : cela permettrait de rassembler des écorégions distinctes géographiquement mais présentant les mêmes caractéristiques physiques. Les diatomées présentent une diversité spécifique très importante qui peut être un frein à leur utilisation en routine. Nous avons montré qu'en augmentant la précision de détermination (de la subdivision à l'espèce), les performances d'évaluation de la pollution augmentait mais beaucoup moins que le nombre de taxons. Les performances d'évaluation entre le genre et l'espèce sont d'ailleurs proches, alors qu'il y a dix fois plus d'espèce que de genres. Nous avons montré aussi que des métriques simplificatrices (formes de vie, guildes écologiques) permettaient d'évaluer aussi bien le niveau en nutriment que des indices diatomiques basés sur les espèces. Ces métriques apportent des informations supplémentaires en termes de structure de biofilm qui ne sont accessible aux données en espèce. Enfin, la pollution des rivières par les micropolluants devient une préoccupation sociétale croissante. Nous avons émis l'hypothèse que les diatomées pouvaient être de bons candidats pour évaluer la pression en herbicides. Quatre expérimentations de 2 mois ont été réalisées en mésocosmes lotiques. Nous avons montré que les diatomées vivant entourées de matrices polysaccharidiques épaisses étaient plus résistantes aux pesticides dissous. Au contraire les diatomées présentant une surface cellulaire de contact importante avec l'eau étaient défavorisées. Ce type de métrique pourrait être utilisé in situ à plus large échelle. Nous concluons sur l'intérêt d'intégrer ces métriques à la bioindication par les diatomées. Mais également nous soulignons l'importance de croiser la phylogénie et l'écologie pour mieux comprendre quelles pressions environnementales ont forcées les diatomées à s'adapter. Si ces pressions peuvent être reliées à des pressions anthropiques, la bioindication par les diatomées en sera améliorée.Diatoms are ubiquitous microalgae of an extreme diversity. This made them good indicators of aquatic ecosystems quality and they are used since 50 years for this purpose. Since year 2000, the European Water Framework Directive requires their use to assess the ecological quality of watercourses. A typological framework has to be used in order to compare comparable rivers between each other, that is, rivers of the same bioclimatic regions, flowing on the same geological substrate at similar altitudes. Various ecoregional classifications were defined on the basis of these parameters. We showed at a scale covering 4 countries (Spain, France, Italy and Switzerland) and at a regional scale (north-east France) that ecoregions and geology are determinant to explain communities. Parameters characterizing pollution were less important. Unlike some authors, we did not observe any homogenization of the communities when pollution level was increasing. Moreover, we did not observe geographically restricted communities: this would enable to aggregate ecoregions geographically distinct but presenting the same physical characteristics. Diatoms display a very important specific diversity which can be a problem for their routine use. We showed that when increasing determination precision (from sub-division to species), pollution assessment performances were increasing but much less than the number of taxa. Assessment performances between genus and species are similar anyway, whereas there are ten time more species than genera. We also showed that using simplifying metrics (life-forms, ecological guilds) enable assessing nutrient level as well as diatom indices based on species. These metrics bring additional information about biofilms structure that is not available with species data. At last, micropollutants pollution in rivers is of increasing concern to citizens. We hypothesized that diatoms could be good candidates to assess herbicide pressure. Four experiments lasting 2 months were conducted in lotic mesocosms. We showed that diatoms surrounded by thick exopolysaccharid matrices were more resistant to dissolved pesticides. On the over hand, diatoms presenting an important cell surface contact with water were disadvantaged. This kind of metric could be used in situ at a larger scale. We conclude on the interest to integrate such metrics to diatom bioassessment. But we also strength the importance to cross phylogeny and ecology to better understand which environmental pressure forced diatoms adapt. If these pressures can be related to anthropogenic pressures, diatom bioassessment will be improved.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Phylogenetic Affiliation of SSU rRNA Genes Generated by Massively Parallel Sequencing: New Insights into the Freshwater Protist Diversity

    Get PDF
    International audienceRecent advances in next-generation sequencing (NGS) technologies spur progress in determining the microbial diversity in various ecosystems by highlighting, for example, the rare biosphere. Currently, high-throughput pyrotag sequencing of PCR-amplified SSU rRNA gene regions is mainly used to characterize bacterial and archaeal communities, and rarely to characterize protist communities. In addition, although taxonomic assessment through phylogeny is considered as the most robust approach, similarity and probabilistic approaches remain the most commonly used for taxonomic affiliation. In a first part of this work, a tree-based method was compared with different approaches of taxonomic affiliation (BLAST and RDP) of 18S rRNA gene sequences and was shown to be the most accurate for near full-length sequences and for 400 bp amplicons, with the exception of amplicons covering the V5-V6 region. Secondly, the applicability of this method was tested by running a full scale test using an original pyrosequencing dataset of 18S rRNA genes of small lacustrine protists (0.2-5 mm) from eight freshwater ecosystems. Our results revealed that i) fewer than 5% of the operational taxonomic units (OTUs) identified through clustering and phylogenetic affiliation had been previously detected in lakes, based on comparison to sequence in public databases; ii) the sequencing depth provided by the NGS coupled with a phylogenetic approach allowed to shed light on clades of freshwater protists rarely or never detected with classical molecular ecology approaches; and iii) phylogenetic methods are more robust in describing the structuring of under-studied or highly divergent populations. More precisely, new putative clades belonging to Mamiellophyceae, Foraminifera, Dictyochophyceae and Euglenida were detected. Beyond the study of protists, these results illustrate that the tree-based approach for NGS based diversity characterization allows an in-depth description of microbial communities including taxonomic profiling, community structuring and the description of clades of any microorganisms (protists, Bacteria and Archaea)

    Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

    Get PDF
    International audienceTo test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December–March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April–August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI sub-clusters were involved in ammonia oxidation through the hy-drolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies

    Virus, bactéries et protistes pathogènes du phytoplancton, le rôle insoupçonné des parasites dans le fonctionnement des écosystèmes aquatiques

    Get PDF
    International audienceMicroscopiques, les parasites sont la plupart du temps invisibles, mais présents partout. Ils infectent tous les organismes du monde vivant. La dernière décennie a révélé une incroyable diversité chez les parasites viraux, bactériens et eucaryotes. Ceux infectant le phytoplancton pourraient avoir une importance capitale dans la dynamique des populations algales et dans le fonctionnement des écosystèmes aquatiques, mais leur rôle est encore très largement méconnu à ce jour (Brussaard, 2004). Sur ces questions, la recherche ne fait que commencer

    Biodiversity patterns of cyanobacterial oligotypes in lakes and rivers: results of a large-scale metabarcoding survey in the Alpine region

    Get PDF
    In this work, we characterised the cyanobacterial communities in the plankton and littoral biofilm of 38 lakes and in the biofilm of 21 rivers in the Alps and surrounding subalpine regions by 16S rRNA gene metabarcoding. We found little overlap in the distribution of amplicon sequence variants (ASVs) between the three habitats and between water bodies. The differences were caused by environmental filtering acting on the selection of the most abundant ASVs and a high contribution of rare oligotypes. The differentiation of community and genotype composition from specific water bodies was explained to a significant extent by environmental variables and morphometry. The taxonomic consistency of ASVs classified under the same genus name was assessed by phylogenetic analyses performed on three representative dominant genera, namely Cyanobium, Tychonema and Planktothrix. The analyses revealed eco-evolutionary adaptations in lakes and rivers, including some evidence for a polyphyletic nature. Monitoring individual genotypes in relation to environmental conditions will be useful to define the ecological amplitude of these taxa. However, the persistence or ephemeral nature of some of the rarest and most unusual ASVs has remained unknow

    Diversity, spatial distribution and activity of fungi in freshwater ecosystems

    Get PDF
    High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction of fungi through the 18S rRNA transcripts level. These results revealed a high diversity of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were Dikarya (47%), represented by putative filamentous fungi more diverse and abundant in freshwater habitats than previous studies have suggested, followed by Cryptomycota (17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed the same dominant groups as those observed at the 18S rRNA genes level. On average 13.25% of the fungal OTUs were active. The small number of OTUs shared among aquatic ecosystems may result from the low abundances of those microorganisms and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment or catchment areas). The richness estimates suggest that fungi have been overlooked and undersampled in freshwater ecosystems, especially rivers, though they play key roles in ecosystem functioning as saprophytes and parasites

    Alpine freshwater fish biodiversity assessment: an inter-calibration test for metabarcoding method set up

    Get PDF
    The analysis of environmental DNA (eDNA) by high throughput sequencing (HTS) is proving to be a promising tool for freshwater fish biodiversity assessment in Europe within the Water Framework Directive (WFD, 2000/60/EC), especially for large rivers and lakes where current fish monitoring techniques have known shortcomings. These new biomonitoring methods based on eDNA show several advantages compared to classical morphological methods. The sampling procedures are easier and cheaper and eDNA metabarcoding is non-invasive and very sensitive, allowing for the detection of traces of DNA. However, eDNA metabarcoding methods need careful standardization to make the results of different surveys comparable. The aim of the EU project Eco-AlpsWater is to test and validate molecular biodiversity monitoring tools for aquatic ecosystems (i.e., eDNA metabarcoding) to improve the traditional WFD monitoring approaches in Alpine waterbodies. To this end, an inter-calibration test was performed using fish mock community samples containing either tissue-extracted DNA, eDNA collected from aquaculture tanks and eDNA samples collected from Lake Bourget (France). Samples were analysed using a DNA metabarcoding approach, relying on the amplification and HTS of a 12S rDNA marker, in two separate laboratories, to evaluate if different laboratory and bioinformatic protocols can provide a reliable and comparable description of the fish communities in both mock and natural samples. Our results highlight good replicability of the molecular laboratory protocols for HTS and good amplification success of selected primers, providing essential information concerning the taxonomic resolution of the 12S mitochondrial marker in describing the Alpine fish communities. Interestingly, different concentrations of species DNA in the mock samples were well represented by the relative DNA reads abundance. These tests confirm the reproducibility of eDNA metabarcoding analyses for the biomonitoring of freshwater fish inhabiting Alpine and peri-Alpine lakes and river

    Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems

    Get PDF
    Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere

    Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems

    Get PDF
    Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere

    Scientists’ Warning to Humanity: Rapid degradation of the world\u27s large lakes

    Get PDF
    Large lakes of the world are habitats for diverse species, including endemic taxa, and are valuable resources that provide humanity with many ecosystem services. They are also sentinels of global and local change, and recent studies in limnology and paleolimnology have demonstrated disturbing evidence of their collective degradation in terms of depletion of resources (water and food), rapid warming and loss of ice, destruction of habitats and ecosystems, loss of species, and accelerating pollution. Large lakes are particularly exposed to anthropogenic and climatic stressors. The Second Warning to Humanity provides a framework to assess the dangers now threatening the world\u27s large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services. Here we review current and emerging threats to the large lakes of the world, including iconic examples of lake management failures and successes, from which we identify priorities and approaches for future conservation efforts. The review underscores the extent of lake resource degradation, which is a result of cumulative perturbation through time by long-term human impacts combined with other emerging stressors. Decades of degradation of large lakes have resulted in major challenges for restoration and management and a legacy of ecological and economic costs for future generations. Large lakes will require more intense conservation efforts in a warmer, increasingly populated world to achieve sustainable, high-quality waters. This Warning to Humanity is also an opportunity to highlight the value of a long-term lake observatory network to monitor and report on environmental changes in large lake ecosystems
    corecore