324 research outputs found

    Persistent antibody clonotypes dominate the serum response to influenza following repeated vaccination over multiple years

    Get PDF
    We used Ig-Seq, a liquid chromatography tandem mass spectrometry (LC-MS/MS)–based serum antibody proteomics methodology, to determine the clonal composition and dynamics of the H1N1 California/7/2009 (CA09) hemagglutinin (HA)-reactive antibody repertoire over 5 years in a well-characterized donor from whom a large number of homosubtypic and heterosubtypic neutralizing monoclonal antibodies had been previously isolated by B cell analysis. The donor was infected with the CA09 strain in 2009 and immunized annually for the next five years with seasonal influenza vaccine which contained the CA09 strain. We find that the serological repertoire in this donor was highly static, with a modest number (24) of persistent antibody clonotypes, detected in serum for at least 4 out of 5 years, accounting on average for 72.6 ± 10.0% of the repertoire to the CA09 HA. These persistent antibodies: (i) displayed a higher degree of somatic hypermutation relative to antibodies that could be detected in the serum transiently (i.e. lasted less than 1 year in serum); (ii) comprised a significant fraction that also bound to HA from a phylogenetically distant H5N1 A/Vietnam/1203/2004 (VT04) strain, a hallmark of stem-binding antibodies due to the lack of homology between CA09 and VT04 in the head region of HA and (iii) perhaps most strikingly, but consistent with the wealth of heterosubtypic neutralizing antibodies that had previously been identified from this donor, some of the most abundant persistent antibody clonotypes, including the dominant clone that accounted on average for 18.6 ± 12.3% of the serum titer across 5 years, neutralized both the CA09 and VT04 influenza strains. Our analysis highlights the magnitude of ‘serological imprinting’ in the donor’s serum response to CA09, indicates that seasonal vaccination can further reinforce a stable serological memory and finally suggests that once elicited, antibodies cross-reactive between CA09 and VT04 with heterosubtypic neutralization activity, thus likely to bind to HA-stem, can persist for many years, which is a fundamental goal of universal influenza vaccines

    Variants in Hormone Biosynthesis Genes and Risk of Endometrial Cancer.

    Get PDF
    We investigated the risk associated with variants in three genes involved in estrogen biosynthesis, CYP11A1, CYP17A1, and CYP19A1, in the population-based case-control study of Estrogen, Diet, Genetics, and Endometrial Cancer. This study was conducted in New Jersey in 2001-2006 with 417 cases and 402 controls. For CYP11A1, there was no association between the number of [TTTTA]( n ) repeats (D15S520) and risk. For CYP17A1, risk was somewhat lower among women with the C/C genotype at T-34C (rs743572) (adjusted OR = 0.65, 95% CI 0.41-1.02). For CYP19A1, risk was lower among women homozygous for the 3-bp deletion (rs11575899) in exon 4 (adjusted OR = 0.44, 95% CI 0.26-0.76), while the number of [TTTA]( n ) repeats was not significantly related to risk: the adjusted OR for n = 7/7 repeats versus n \u3e 7/\u3e7 repeats was 0.81 (95% CI 0.54-1.23). In stratified analyses, results for CYP19A1 were stronger among women with higher (\u3e or =27.4) body mass index: for the homozygous deletion, OR = 0.30 (95% CI 0.15-0.62); for the n = 7/7 genotype, OR = 0.49 (95% CI 0.26-0.93). The interaction between the n = 7/7 genotype and BMI was statistically significant (p = 0.01). The insertion/deletion variant in CYP19A1 appears to be related to risk of endometrial cancer; risk associated with variants in this gene may vary according to BMI

    Metabolic biomarkers assessed with PET/CT predict sex-specific longitudinal outcomes in patients with diffuse large B-cell lymphoma

    Get PDF
    In many cancers, including lymphoma, males have higher incidence and mortality than females. Emerging evidence demonstrates that one mechanism underlying this phenomenon is sex differences in metabolism, both with respect to tumor nutrient consumption and systemic alterations in metabolism, i.e., obesity. We wanted to determine if visceral fat and tumor glucose uptake with fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) could predict sex-dependent outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We conducted a retrospective analysis of 160 patients (84 males; 76 females) with DLBCL who had imaging at initial staging and after completion of therapy. CT-based relative visceral fat area (rVFA), PET-based SUVmax normalized to lean body mass (SULmax), and end-of-treatment FDG-PET 5PS score were calculated. Increased rVFA at initial staging was an independent predictor of poor OS only in females. At the end of therapy, increase in visceral fat was a significant predictor of poor survival only in females. Combining the change in rVFA and 5PS scores identified a subgroup of females with visceral fat gain and high 5PS with exceptionally poor outcomes. These data suggest that visceral fat and tumor FDG uptake can predict outcomes in DLBCL patients in a sex-specific fashion

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes

    Get PDF
    The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following SARS-CoV-2 infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor-binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an N-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multi-donor class of “public” antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that “public” NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    A Critical Tryptophan and Ca2+ in Activation and Catalysis of TPPI, the Enzyme Deficient in Classic Late-Infantile Neuronal Ceroid Lipofuscinosis

    Get PDF
    Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca(2+).Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme.NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI.We propose that W542 and Ca(2+) are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca(2+) is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis

    Selective sigma-2 ligands preferentially bind to pancreatic adenocarcinomas: applications in diagnostic imaging and therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to modern adjuvant treatment is in part due to the failure of programmed cell death. Therefore the molecules that execute the apoptotic program are potential targets for the development of anti-cancer therapeutics. The sigma-2 receptor has been found to be over-expressed in some types of malignant tumors, and, recently, small molecule ligands to the sigma-2 receptor were found to induce cancer cell apoptosis.</p> <p>Results</p> <p>The sigma-2 receptor was expressed at high levels in both human and murine pancreas cancer cell lines, with minimal or limited expression in normal tissues, including: brain, kidney, liver, lung, pancreas and spleen. Micro-PET imaging was used to demonstrate that the sigma-2 receptor was preferentially expressed in tumor as opposed to normal tissues in pancreas tumor allograft-bearing mice. Two structurally distinct sigma-2 receptor ligands, SV119 and WC26, were found to induce apoptosis to mice and human pancreatic cancer cells <it>in vitro </it>and <it>in vivo</it>. Sigma-2 receptor ligands induced apoptosis in a dose dependent fashion in all pancreatic cell lines tested. At the highest dose tested (10 μM), all sigma-2 receptor ligands induced 10–20% apoptosis in all pancreatic cancer cell lines tested (p < 0.05). In pancreas tumor allograft-bearing mice, a single bolus dose of WC26 caused approximately 50% apoptosis in the tumor compared to no appreciable apoptosis in tumor-bearing, vehicle-injected control animals (p < 0.0001). WC26 significantly slowed tumor growth after a 5 day treatment compared to vehicle-injected control animals (p < 0.0001) and blood chemistry panels suggested that there is minimal peripheral toxicity.</p> <p>Conclusion</p> <p>We demonstrate a novel therapeutic strategy that induces a significant increase in pancreas cancer cell death. This strategy highlights a new potential target for the treatment of pancreas cancer, which has little in the way of effective treatments.</p
    • …
    corecore