142 research outputs found

    Nosocomial infection

    Get PDF
    Nosocomial infection is one of the important problems that occur with patients who were admitted in the hospital. It can be found in all level of hospitals and the numbers of cases increase every year. This infection leads to increase severity of the disease and prolong of hospitalization. Nosocomial infection was diagnosed by analyzing information such as medical history, signs and symptoms, and laboratory identification. The most common sites that nosocomial infection can be found are respiratory tract, urinary tract, and surgical site. The commonly found pathogens are Pseudomonas aeruginosa, Klebsiella spp., Acinetobacter baumannii, Methicillin resistant Staphylococcus aureus (MRSA), and Enterococci. During last decade, this group of pathogens has developed many antibiotic resistance mechanisms causing the increasing cost and time of new generation antibiotic to eliminate them. The best solution for nosocomial infection is the prevention before the infection occurred and controls the infection when there is a case to stop infecting other patient in the same ward. To make the prevention and control function, all doctors, nurses, and other hospital staffs have to take part in the program which will finally lead to the most efficient and sustainable outcome.

    Giardia intestinalis in Thailand: Identification of Genotypes

    Get PDF
    This study was undertaken to determine the genetic diversities of Giardia intestinalis isolated in Thailand. G. intestinalis cysts were collected from stool samples of 61 subjects residing in Bangkok or in rural communities of Thailand with and without gastrointestinal symptoms. All the cyst samples gave positive tpi amplicons (100% sensitivity), either of the 148- or the 81-bp tpi segments. Cyst assemblage identification of the 148- and 81-bp tpi gene segments by polymerase chain reaction showed that 8% of the cysts were assemblage A, 41% assemblage A and B combined, and 51% assemblage B. The prevalence of assemblage A was significantly lower than that of assemblage B and the mixed types. Restriction fragment length polymorphism (RFLP) of the 384-bp β-giardin gene segment revealed that 12% and 88% of the assemblage A cysts were AI and AII respectively. RFLP, based on the 432-bp gdh gene segment, showed 45.5% of the assemblage B cysts to be BIII and 54.5% to be BIV. The AI sub-assemblage was less prevalent than the others. All subjects with AI and 50% of the subjects with BIII sub-assemblage cysts were symptomatic; 80% of symptomatic Bangkok residents were adults/elderly while 85% of the rural cases were children

    Prevalence of Listeria monocytogenes in Raw Meats Marketed in Bangkok and Characterization of the Isolates by Phenotypic and Molecular Methods

    Get PDF
    Listeria monocytogenes causes listeriosis characterized by septicaemia, encephalitis, and abortion or stillbirth. Regular monitoring of its prevalence in food and characterization of its phenotypes and genotypes are necessary for disease surveillance and tracing the epidemic outbreaks. In this study, the prevalence of L. monocytogenes in raw meats marketed in Bangkok was 15.4%. The bacteria isolated from meat were serotyped and genotyped using enterobacterial repetitive intergenic consensus–polymerase chain reaction (ERIC-PCR). Their virulence-associated genes, antimicrobial susceptibility, and ability to invade intestinal epithelial cells were studied. All 22 L. monocytogenes strains isolated from 104 raw meat samples carried virulence-associated genes, such as actA, flaA, hlyA, iap, inlA, inlB, and prfA. These were serotype 4b, suggesting their pathogenic and epidemic potential. These isolates could be classified into six ERIC-PCR groups: A-F. The majority (59.1%) of the isolates belonged to Group A, and three isolates were Group D which was closely related to the Group A. Two isolates each were Group C and E, and one isolate each was group B and F. Although the isolates belonged to the same serotype and genotype and were all equipped with the virulence-associated genes, they showed a different cell invasion capability and antibiotic susceptibility. All the isolates were susceptible to ampicillin, amikacin, chloramphenicol, gentamicin, imipenem, penicillin G, sulphamethoxazole-trimethoprim, and tetracycline. However, one isolate showed only intermediate susceptibility to tetracycline. The data provide the first molecular insight into the L. monocytogenes isolates in Thailand and elucidate a potential risk of people contracting listeriosis

    Staphylococcus spp. associated with subclinical bovine mastitis in central and northeast provinces of Thailand

    Get PDF
    Background Staphylococcus spp. are major cause of bovine mastitis (BM) worldwide leading to economic damage to dairy farms and public health threat. Recently, a newly emerged Staphylococcus argenteus has been found as a human and animal pathogen. Molecular characteristics, virulence and antibiotic resistant phenotypes of bacteria causing BM in Thailand are rare. This study aimed to investigated Staphylococcus spp. associated with subclinical bovine mastitis (SCM) in Thailand. Methods Milk samples were collected from 224 cows of 52 dairy herds in four central and northeast provinces. Total somatic cell counts (SCC) and California mastitis test (CMT) were used to identify SCM cows. Milk samples were cultured for Staphylococcus spp. Coagulase-positive isolates were subjected to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Organisms suspected as S. argenteus were verified by detecting nonribosomal peptide synthetase gene. All isolates were checked for antibiograms and the presence of various virulence genes. Results From the 224 milk samples of 224 cows, 132 (59%) were positive for SCM by SCC and CMT and 229 staphylococcal isolates were recovered. They were 32 coagulase-positive (24 S. aureus and eight S. argenteus) and 197 coagulase-negative. PFGE of the S. aureus and S. argenteus revealed 11 clusters and a non-typeable pattern. MLST of representatives of the 11 PFGE clusters, three PFGE non-typeable S. aureus isolates from different locations and S. argenteus showed 12 sequence types. The eight S. argenteus isolates belonged to ST1223 (three isolates), ST2250 (two isolates), and ST2793 (two isolates). The antimicrobial tests identified 11 (46%) methicillin-resistant S. aureus and 25 (13%) methicillin-resistant coagulase-negative isolates, while seven S. argenteus were methicillin-susceptible and one isolate was methicillin-resistant. All of the 229 isolates were multiply resistant to other antibiotics. The most prevalent virulence genes of the 24 S. aureus isolates were clfA, coa and spa (X and IgG-binding region) (100%), hla (96%), pvl (96%) and sec (79%). Six S. argenteus isolates carried one enterotoxin gene each and other virulence genes including coa, clfA, hla/hlb, spa, tsst and pvl, indicating their pathogenic potential. Conclusion and perspective This is the first report on the S. argenteus from cow milk samples with SCM. Data on the molecular characteristics, virulence genes and antibiograms of the Staphylococcus spp. obtained from the present study showed a wide spread and increasing trend of methicillin-resistance and multiple resistance to other antibiotics. This suggests that the “One Health” practice should be nurtured, not only at the dairy farm level, but also at the national or even the international levels through cooperation of different sectors (dairy farmers, veterinarians, medical and public health personnel and scientists) in order to effectively combat and control the spread of these pathogens

    Prevalence of Listeria monocytogenes in Raw Meats Marketed in Bangkok and Characterization of the Isolates by Phenotypic and Molecular Methods

    Get PDF
    Listeria monocytogenes causes listeriosis characterized by septicaemia, encephalitis, and abortion or stillbirth. Regular monitoring of its prevalence in food and characterization of its phenotypes and genotypes are necessary for disease surveillance and tracing the epidemic outbreaks. In this study, the prevalence of L. monocytogenes in raw meats marketed in Bangkok was 15.4%. The bacteria isolated from meat were serotyped and genotyped using enterobacterial repetitive intergenic consensus\u2013polymerase chain reaction (ERIC-PCR). Their virulence-associated genes, antimicrobial susceptibility, and ability to invade intestinal epithelial cells were studied. All 22 L. monocytogenes strains isolated from 104 raw meat samples carried virulence-associated genes, such as actA, flaA, hlyA, iap, inlA, inlB, and prfA. These were serotype 4b, suggesting their pathogenic and epidemic potential. These isolates could be classified into six ERIC-PCR groups: A-F. The majority (59.1%) of the isolates belonged to Group A, and three isolates were Group D which was closely related to the Group A. Two isolates each were Group C and E, and one isolate each was group B and F. Although the isolates belonged to the same serotype and genotype and were all equipped with the virulence-associated genes, they showed a different cell invasion capability and antibiotic susceptibility. All the isolates were susceptible to ampicillin, amikacin, chloramphenicol, gentamicin, imipenem, penicillin G, sulphamethoxazole-trimethoprim, and tetracycline. However, one isolate showed only intermediate susceptibility to tetracycline. The data provide the first molecular insight into the L. monocytogenes isolates in Thailand and elucidate a potential risk of people contracting listeriosis

    Impact of direct cell co-cultures on human adipose-derived stromal cells and nucleus pulposus cells

    Get PDF
    Biologic and cellular treatment strategies aiming for curing intervertebral disc degeneration (IDD) have been proposed recently. Given the convenient availability and expansion potential, adipose-derived stromal cells (ADSCs) might be an ideal cell candidate. However, the interaction between ADSCs and nucleus pulposus (NP) cells still remains ambiguous, especially in direct co-cultures of the two types of cells. Nevertheless, NP markers in ADSCs after co-cultures were unidentified. Here, we addressed the interaction of human ADSCs and NP cells in a direct co-culture system for the first time. As a result, ADSCs could differentiate to the NP cell phenotype with a significant up-regulated expression of multiple genes and proteins in extracellular matrix (ECM) (SOX9, COL2A1, ACAN, and COL6A2), relative NP markers (FOXF1, PAX1, CA12, and HBB) and pertinent growth factors (CDMP-1, TGF-beta1, IGF-1, and CTGF). Moreover, the gene expression of COL2A1, ACAN, and COL6A2 of degenerate NP cells was also up-regulated. Collectively, these results suggest that direct co-cultures of ADSCs and NP cells may exert a reciprocal impact, that is, both stimulating ADSCs differentiation to the NP cell phenotype and inducing NP cells to regain functional phenotype. Accordingly, ADSCs might be a potential candidate in the development of cellular treatment strategies for IDD.published_or_final_versio

    Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells

    Get PDF
    Directed specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDR−PDGFRα+ progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFβ signaling controller. Isolated (GFP+)KDR−PDGFRα+ mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFβ and BMP. Under these conditions, the cells showed robust chondrogenic activity in micromass culture, and generated a hyaline-like translucent cartilage particle in serum-free medium. In contrast, both STRO1+ mesenchymal stem/stromal cells from adult human marrow and mesenchymal cells spontaneously arising from hPS cells showed a relatively weaker chondrogenic response in vitro, and formed more of the fibrotic cartilage particles. Thus, hPS cell-derived KDR−PDGFRα+ paraxial mesoderm-like cells have potential in engineered cartilage formation and cartilage repair

    Progenitor and stem cells for bone and cartilage regeneration

    Get PDF
    Research in regenerative medicine is developing at a significantly quick pace. Cell-based bone and cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from limb amputation, damaged tissues and various bone and cartilage-related disorders. Stem cells are undifferentiated cells with the capability to regenerate into one or more committed cell lineages. Stem cells isolated from multiple sources have been finding widespread use to advance the field of tissue repair. The present review gives a comprehensive overview of the developments in stem cells originating from different tissues and suggests future prospects for functional bone and cartilage tissue regeneration.The European Network of Excellence EXPERTISSUES (Project No. NMP3-CT-2004-500283), under which this work was carried out, is acknowledged
    corecore