8 research outputs found

    Early versus delayed antiretroviral therapy based on genotypic resistance test: Results from a large retrospective cohort study

    Get PDF
    Rapid start of antiretroviral therapy (ART) pending genotypic resistance test (GRT) has been recently proposed, but the effectiveness of this strategy is still debated. The rate of virological success (VS), defined as HIV-RNA\u2009<\u200950 copies/ml, with and without GRT was compared in drug-na\uefve individuals enrolled in the Italian ARCA cohort who started ART between 2015 and 2018. 521 individuals started ART: 397 without GRT (pre-GRT group) and 124 following GRT (post-GRT group). Overall, 398 (76%) were males and 30 (6%) were diagnosed with AIDS. In the pre-GRT group, baseline CD4+\u2009cell counts were lower (p\u2009<\u20090.001), and viral load was higher (p\u2009<\u20090.001) than in the post-GRT group. The estimated probability of VS in pre-GRT versus post-GRT group was 72.54% (CI95 : 67.78-76.60) versus 66.94% (CI95 : 57.53-74.26) at Week 24 and 92.40% (CI95 : 89.26-94.62) versus 92.92% (CI95 : 86.35-96.33) at Week 48, respectively (p\u2009=\u20090.434). At Week 48, VS was less frequent among individuals with baseline CD4+\u2009cell counts <200 versus >500 (90.33% vs. 97.33%), log viral load <5.00 versus >5.70 log10 cps/ml (97.17% vs 78.16%; p\u2009<\u20090.001), and those treated with protease inhibitors or non-nucleoside reverse transcriptase inhibitors versus those treated with integrase strand transfer inhibitors (p\u2009<\u20090.001). The rate of VS does not seem to be affected by an early ART initiation pending GRT results, but it could be influenced by the composition of the ART regimen, as well as immuno-virological parameters

    Earlier initiation of antiretroviral treatment coincides with an initial control of the HIV-1 sub-subtype F1 outbreak among men-having-sex-with-men in Flanders, Belgium

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) non-B subtype infections occurred in Belgium since the 1980s, mainly amongst migrants and heterosexuals, whereas subtype B predominated in men-having-sex-with-men (MSM). In the last decade, the diagnosis of F1 sub-subtype in particular has increased substantially, which prompted us to perform a detailed reconstruction of its epidemiological history. To this purpose, the Belgian AIDS Reference Laboratories collected HIV-1 pol sequences from all sub-subtype F1-infected patients for whom genotypic drug resistance testing was requested as part of routine clinical follow-up. This data was complemented with HIV-1 pol sequences from countries with a high burden of F1 infections or a potential role in the global origin of sub-subtype F1. The molecular epidemiology of the Belgian subtype F1 epidemic was investigated using Bayesian phylogenetic inference and transmission dynamics were characterized based on birth-death models. F1 sequences were retained from 297 patients diagnosed and linked to care in Belgium between 1988 and 2015. Phylogenetic inference indicated that among the 297 Belgian F1 sequences, 191 belonged to a monophyletic group that mainly contained sequences from people likely infected in Belgium (OR 26.67, 95% CI 9.59-74.15), diagnosed in Flanders (OR 7.28, 95% CI 4.23-12.53), diagnosed at a recent stage of infection (OR 7.19, 95% CI 2.88-17.95) or declared to be MSM (OR 34.8, 95% CI 16.0-75.6). Together with a Spanish clade, this Belgian clade was embedded in the genetic diversity of Brazilian subtype F1 strains and most probably emerged after one or only a few migration events from Brazil to the European continent before 2002. The origin of the Belgian outbreak was dated back to 2002 (95% higher posterior density 2000-2004) and birth-death models suggested that its extensive growth had been controlled (Re < 1) by 2012, coinciding with a time period where delay in antiretroviral treatment initiation substantially declined. In conclusion, phylogenetic reconstruction of the Belgian HIV-1 sub-subtype F1 epidemic illustrates the introduction and substantial dissemination of viral strains in a geographically restricted risk group that was most likely controlled by effective treatment as prevention.publishersversionpublishe

    HIV-1 fitness landscape models for indinavir treatment pressure using observed evolution in longitudinal sequence data are predictive for treatment failure

    Get PDF
    We previously modeled the in vivo evolution of human immunodeficiency virus-1 (HIV-1) under drug selective pressure from cross-sectional viral sequences. These fitness landscapes (FLs) were made by using first a Bayesian network (BN) to map epistatic substitutions, followed by scaling the fitness landscape based on an HIV evolution simulator trying to evolve the sequences from treatment naïve patients into sequences from patients failing treatment. In this study, we compared four FLs trained with different sequence populations. Epistatic interactions were learned from three different cross-sectional BNs, trained with sequence from patients experienced with indinavir (BNT), all protease inhibitors (PIs) (BNP) or all PI except indinavir (BND). Scaling the fitness landscape was done using cross-sectional data from drug naïve and indinavir experienced patients (Fcross using BNT) and using longitudinal sequences from patients failing indinavir (FlongT using BNT, FlongP using BNP, FlongD using BND). Evaluation to predict the failing sequence and therapy outcome was performed on independent sequences of patients on indinavir. Parameters included estimated fitness (LogF), the number of generations (GF) or mutations (MF) to reach the fitness threshold (average fitness when a major resistance mutation appeared), the number of generations (GR) or mutations (MR) to reach a major resistance mutation and compared to genotypic susceptibility score (GSS) from Rega and HIVdb algorithms. In pairwise FL comparisons we found significant correlation between fitness values for individual sequences, and this correlation improved after correcting for the subtype. Furthermore, FLs could predict the failing sequence under indinavir-containing combinations. At 12 and 48 weeks, all parameters from all FLs and indinavir GSS (both for Rega and HIVdb) were predictive of therapy outcome, except MR for FlongT and FlongP. The fitness landscapes have similar predictive power for treatment response under indinavir-containing regimen as standard rules-based algorithms, and additionally allow predicting genetic evolution under indinavir selective pressure

    Comparison of HIV-1 Genotypic Resistance Test Interpretation Systems in Predicting Virological Outcomes Over Time

    Get PDF
    Background: Several decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford's HIVdb) to predict virological outcome at 12, 24, and 48 weeks. Methodology/Principal Findings: Included were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was available at the time of changing treatment with at least one follow-up viral load measurement. Genotypic susceptibility scores for the active regimens were calculated using scores defined by each interpretation system. Using logistic regression, we determined the association between the genotypic susceptibility score and proportion of TCEs having an undetectable viral load (<50 copies/ml) at 12 (8-16) weeks (2152 TCEs), 24 (16-32) weeks (2570 TCEs), and 48 (44-52) weeks (1083 TCEs). The Area under the ROC curve was calculated using a 10-fold cross-validation to compare the different interpretation systems regarding the sensitivity and specificity for predicting undetectable viral load. The mean genotypic susceptibility score of the systems was slightly smaller for HIVdb, with 1.92±1.17, compared to Rega and ANRS, with 2.22±1.09 and 2.23±1.05, respectively. However, similar odds ratio's were found for the association between each-unit increase in genotypic susceptibility score and undetectable viral load at week 12; 1.6 [95% confidence interval 1.5-1.7] for HIVdb, 1.7 [1.5-1.8] for ANRS, and 1.7 [1.9-1.6] for Rega. Odds ratio's increased over time, but remained comparable (odds ratio's ranging between 1.9-2.1 at 24 weeks and 1.9-2.

    Stochastic modelling of genotypic drug-resistance for human immunodeficiency virus towards long-term combination therapy optimization

    No full text
    Abstract Motivation: Several mathematical models have been investigated for the description of viral dynamics in the human body: HIV-1 infection is a particular and interesting scenario, because the virus attacks cells of the immune system that have a role in the antibody production and its high mutation rate permits to escape both the immune response and, in some cases, the drug pressure. The viral genetic evolution is intrinsically a stochastic process, eventually driven by the drug pressure, dependent on the drug combinations and concentration: in this article the viral genotypic drug resistance onset is the main focus addressed. The theoretical basis is the modelling of HIV-1 population dynamics as a predator–prey system of differential equations with a time-dependent therapy efficacy term, while the viral genome mutation evolution follows a Poisson distribution. The instant probabilities of drug resistance are estimated by means of functions trained from in vitro phenotypes, with a roulette-wheel-based mechanisms of resistant selection. Simulations have been designed for treatments made of one and two drugs as well as for combination antiretroviral therapies. The effect of limited adherence to therapy was also analyzed. Sequential treatment change episodes were also exploited with the aim to evaluate optimal synoptic treatment scenarios. Results: The stochastic predator–prey modelling usefully predicted long-term virologic outcomes of evolved HIV-1 strains for selected antiretroviral therapy combinations. For a set of widely used combination therapies, results were consistent with findings reported in literature and with estimates coming from analysis on a large retrospective data base (EuResist). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Reproducibility Project: Cancer Biology

    No full text
    The Reproducibility Project: Cancer Biology was an initiative to independently replicate selected experiments from a number of high-profile papers in the field of cancer biology. In the end 50 experiments from 23 papers were repeated. The final two outputs from the project recount in detail the challenges the project team encountered while repeating these experiments ('Challenges for assessing replicability in preclinical cancer biology': https://elifesciences.org/articles/67995), and report the results of a meta-analysis that combined the results from all the experiments ('Investigating the replicability of preclinical cancer biology': https://elifesciences.org/articles/71601). The project was a collaboration between the Center for Open Science and Science Exchange with all papers published by eLife

    Detection of drug resistance mutations at low plasma HIV-1 RNA load in a European multicentre cohort study

    No full text
    Guidelines indicate a plasma HIV-1 RNA load of 500-1000 copies/mL as the minimal threshold for antiretroviral drug resistance testing. Resistance testing at lower viral load levels may be useful to guide timely treatment switches, although data on the clinical utility of this remain limited. We report here the influence of viral load levels on the probability of detecting drug resistance mutations (DRMs) and other mutations by routine genotypic testing in a large multicentre European cohort, with a focus on tests performed at a viral load <1000 copies/mL
    corecore