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We previously modeled the in vivo evolution of human immunodeficiency virus-1 (HIV-1) under drug
selective pressure from cross-sectional viral sequences. These fitness landscapes (FLs) were made by
using first a Bayesian network (BN) to map epistatic substitutions, followed by scaling the fitness land-
scape based on an HIV evolution simulator trying to evolve the sequences from treatment naïve patients
into sequences from patients failing treatment.

In this study, we compared four FLs trained with different sequence populations. Epistatic interactions
were learned from three different cross-sectional BNs, trained with sequence from patients experienced
with indinavir (BNT), all protease inhibitors (PIs) (BNP) or all PI except indinavir (BND). Scaling the fitness
landscape was done using cross-sectional data from drug naïve and indinavir experienced patients
(Fcross using BNT) and using longitudinal sequences from patients failing indinavir (FlongT using BNT,
FlongP using BNP, FlongD using BND). Evaluation to predict the failing sequence and therapy outcome
was performed on independent sequences of patients on indinavir. Parameters included estimated fitness
(LogF), the number of generations (GF) or mutations (MF) to reach the fitness threshold (average fitness
when a major resistance mutation appeared), the number of generations (GR) or mutations (MR) to reach
a major resistance mutation and compared to genotypic susceptibility score (GSS) from Rega and HIVdb
algorithms.

In pairwise FL comparisons we found significant correlation between fitness values for individual
sequences, and this correlation improved after correcting for the subtype. Furthermore, FLs could predict
the failing sequence under indinavir-containing combinations. At 12 and 48 weeks, all parameters from
Leuven,
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all FLs and indinavir GSS (both for Rega and HIVdb) were predictive of therapy outcome, except MR for
FlongT and FlongP. The fitness landscapes have similar predictive power for treatment response under
indinavir-containing regimen as standard rules-based algorithms, and additionally allow predicting
genetic evolution under indinavir selective pressure.

2013 Elsevier B.V.  � Open access under CC BY-NC-ND license.
1. Introduction

Prediction of human immunodeficiency virus-1 (HIV) drug
resistance is useful to clinicians caring for HIV-1 patients, given
the multitude of possible highly active antiretroviral therapy com-
binations using the more than 25 available antiretroviral drugs and
taking into account the drug resistance profiles (Altmann et al.,
2007; Shafer and Schapiro, 2008). Prospective controlled studies
have shown that patients whose physicians have access to drug
resistance data, particularly genotypic-resistance data, respond
better to therapy than patients of physicians without such access
(Van Laethem and Vandamme, 2006; Liu and Shafer, 2006). This
kind of data has led several experts in North America and Europe
to recommend drug resistance testing in the management of
HIV-1 infected patients (Liu and Shafer, 2006; Hirsch et al., 2008;
Vandamme et al., 2011).

Genotyping is preferentially used to detect resistance related
mutations and the resistance pattern is then interpreted using sev-
eral publicly available algorithms (Van Laethem et al., 2002; Van
Laethem and Vandamme, 2006; Liu and Shafer, 2006; Vercauteren
and Vandamme, 2006). The currently available interpretation sys-
tems are however subject to variability and discordances which
may affect the choice of the proposed therapy and ultimately the
treatment success. Another drawback of genotypic drug resistance
testing is the difficulty to accurately predict the effect of complex
interactions among the many mutations that contribute to drug
resistance and inability to detect minor, but clinically relevant,
drug-resistant variants in a patient’s virus quasispecies (Liu and
Shafer, 2006; Vercauteren and Vandamme, 2006; Shafer and
Schapiro, 2008). Thus, it is important to update the current inter-
pretation algorithms to correctly predict virological response to
treatment.

We previously described a method that models mutational
resistance pathways and estimates a fitness landscape (FL) based
on in vivo virus genetic data and treatment information. The mod-
eled FLs were made by using first a Bayesian network (BN) to map
epistatic substitutions, followed by scaling the fitness landscape
based on an HIV evolution simulator trying to evolve the sequences
from treatment naïve patients into sequences from patients failing
treatment. We showed that this fitness function significantly pre-
dicts resistance development and virological response (Deforche
et al., 2008b; Theys et al., 2010). However, the current method re-
quires a large amount of genotypic data to model a FL. Especially in
the case of newly approved drugs that are initially administered in
salvage regimens, viral sequences from patients treated with one
of these drugs as the only drug in its drug class are rare or not
yet available. Longitudinal sequence data obtained from patients
treated with new drugs in salvage therapy offer a valuable solu-
tion. Since these sequences reduced the problem of inter-patient
variability, they are more informative and therefore can overcome
the need for more sequences.

This study aimed to develop longitudinal FLs and to compare
the different designs to the conventional cross-sectional FL for
the protease inhibitor (PI) indinavir with respect to their clinical
applicability. Three strategies for the FL model design were evalu-
ated with respect to how robust they can be used in the prediction
of treatment outcome. The three strategies differ in how epistatic
mutational interaction is learned in a first step from extensive
cross sectional data available in an entire drug class, while using
in a second step a limited set of longitudinal data for a potential
new drug in the class to scale the fitness landscape. Indinavir
was chosen because sufficient cross-sectional and longitudinal
data of patients failing indinavir with resistance mutations in first
and salvage therapy are available to both construct and evaluate
the different models.
2. Materials and methods

2.1. Data and sequence populations

Two data sets of HIV-1 clinical data were used in this analysis.
The first data set was primarily used to build the fitness models
and was pooled from the Stanford HIV drug resistance Database
(Kantor et al., 2001), Hospital Egas Moniz Lisbon, Portugal and
the University Hospitals, Leuven, Belgium. The second data set pro-
vided independent data to evaluate the performance of the models
in predicting resistance evolution and therapy response and was
obtained from the European research consortiums EuResist and
Virolab and from Israel’s HIV Reference Laboratory (Fig. 1). Se-
quence data were locally stored in a RegaDB instance to facilitate
data management and analysis (Libin et al., 2007). Different
sources were chosen to investigate the robustness of the models
with respect to the varying treatment strategies and the varying
prevalence of HIV-1 subtypes. For each sequence, the subtype
was determined using the Rega HIV-1 Subtyping Tool v2 (de Oli-
veira et al., 2005).

In total, 8 protease sequence populations were extracted from
these two sources. From the first source, the following 5 training
and 1 evaluation populations were derived. Training populations
were as follows; the population PN represented 9116 sequences
from PI-naive patients, the population PT represented 1181 se-
quences from patients treated with indinavir as their first PI, the
population. PP represented 2883 sequences from patients treated
with any PI and only included for each patient the last available se-
quence after PI experience, the population PD represented 1726 se-
quences from patients treated with any PI except indinavir and
included only the last available sequenced per patient. The popula-
tion PL represented pairs of 438 longitudinal sequences from 219
patients consisting of a baseline sequence before and a follow-up
sequences after indinavir treatment. There was no overlap of se-
quences from this latter population with the other sequence pop-
ulations. The evaluation population PE represented 3690 PI
experienced sequences independent from those described above,
which were used for comparison of absolute fitness values derived
from various fitness landscapes.

From the second source, two non-overlapping evaluation popu-
lations were derived from indinavir treated patients, irrespective
of previous PI experience. The population PV consisted of 626 longi-
tudinal sequences paired from 313 patients and was used for evalu-
ating predicted evolution against observed evolution. The
population PC represented 320 baseline sequences from indinavir
treated patients for whom a treatment change episode (TCE) accom-
panied by baseline genotype, baseline and follow-up viral load was
available. TCEs were from patients receiving an indinavir-contain-
ing treatment regimen whether or not the patient was failing or

http://creativecommons.org/licenses/by-nc-nd/3.0/


Fig. 1. Schema used in modeling fitness landscapes and its evaluation. Training data used to make epistatic interaction models using Bayesian Network Learning (BN) and to
scale the Fitness Landscape (FL). Three types of BN (BNT, BNP and BND) were constructed trained with sequence populations PT, PP and PD respectively, which differ in
protease inhibitor (PI) exposure. PT sequences were from patients with indinavir experience as the first PI, PP from patients experienced with any PI and PD from patients
with any PI except indinavir. The population PN consisted of sequences naive to PI. To scale the fitness landscape Fcross, the evolution simulator was used to train Fcross such
that evolution of PN over Fcross ended up in a population of sequences resembling PT. Population PL consisted of pairs of each a baseline and a follow-up sequence from the
same patient before and after experience with indinavir, and these were used to train the scaling of all longitudinal FLs, such that baseline sequences evolved over the FL
resulted in simulated follow-up sequences closely resembling the observed follow-up sequences after evolution over the FLs. Thus, four fitness functions Fcross, FlongT (using
BNT), FlongP (using BNP) and FlongD (using BND) were scaled by simulating evolution of naïve or baseline sequence to treated sequence. Population PE, contained a set of
sequences independent from the training set to evaluate the FL. Population PV, contained a set of longitudinal pairs of sequences independent of the training set to evaluate
the prediction of evolution using the FL. Sequences of patients (PC) with treatment change episode (TCE) at week 12 and week 48 were used to derive selective pressure and
genetic barrier parameters from each FL and its predictive power on virological failure determined and compared with that of Rega and HIVdb interpretation systems (IS).
Selective pressure parameter: logarithm of absolute fitness (LogF) and genetic barrier parameters: number of viral generations to fitness threshold (GF), number of viral
mutations to fitness threshold (MF), number of viral generations (GR) to a major drug resistance mutation (DRM) and number of viral mutations to major DRM (MR). These
parameters are computed for each baseline sequence using the evaluation data over the respective FLs. For IS, genotypic susceptibility score (GSS) is calculated for each
baseline sequence assigning a score for each drug. Summing up the individual drug scores gives total GSS for the background regimen.
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had received indinavir before. Each TCE contained baseline param-
eters taken as close as possible to week 0. Both baseline genotype
and viral load were taken not earlier than 12 weeks before or later
than the start of TCE and a follow-up viral load at 12 (the closest va-
lue falling between 4 and 16, median 8.9 with interquartile range
5.7–12.6) weeks and/or 48 (16–52, median 40 with interquartile
range 28.3–46.4) weeks (Supplementary Fig. 1). For endpoint one,
endpoint two and both endpoints together, data from 281, 247
and 208 patients were available respectively (Supplementary Fig. 2).
2.2. Learning qualitative epistatic interactions between protease
amino acids

Bayesian Network (BN) learning was performed in order to map
the epistatic dependencies between mutations and/or polymor-
phisms due to selective pressure from a particular drug as de-
scribed previously (Deforche et al., 2006; Deforche et al., 2007)
and Fig. 1. BN learning used probability computations to learn
the associations between mutations and the resulting BN can be
represented graphically by nodes denoting amino acids and arcs
(arrows) denoting direct dependencies between the joined nodes.
BN learning was done using the B-course software (Myllymäki
et al., 2002) and adapted by (Deforche et al., 2006), scoring models
by maximizing the posterior probability of the model. Boolean
variables were used to represent the presence or absence of amino
acid mutations. Networks were learned including all polymorphic
amino acids with prevalence greater than 1% in the sequence pop-
ulation of untreated patients. Mutations related to indinavir or PI
treatment were selected after testing for significant independence
from treatment using Mantel–Haenszel v2 test while correcting for
multiple tests using Benjamini & Hochberg with a False Discovery
Rate (FDR) of 0.05.

In total, three BNs were learned using the three training se-
quence populations from treatment experienced patients. The net-
work BNT was learned using the population PT to map interactions
between indinavir mutations, the network BNP was learned using
the population PP to map interactions between PI mutations and
the network BND was learned using the population PD to map
interactions between PI mutations not selected by indinavir. All
BNs are available upon request.
2.3. Construction and scaling of the fitness landscape models

HIV-1 fitness functions were estimated as described previously
(Deforche et al., 2008a). The general method used to derive the fit-
ness landscapes (FLs) is depicted in Fig. 1. The first step was
modeling the qualitative epistatic interactions by the respective
BNs as described above, which served as a template for the fitness
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function structure. In a second step, the fitness landscape is scaled
by simulating the evolution of viral sequences from naïve patients
into sequences from treated patients. In an iterative procedure, se-
quences from naive patients (PN) are evolved over the FL, and sim-
ulated treated sequences are compared with the real observed
sequences. Parameters of the fitness landscapes are incrementally
improved to converge to the optimal fitness function. After conver-
gence, the obtained fitness function provides a model for HIV-1
evolution under indinavir selective pressure. We therefore call
these fitness functions, ‘fitness landscapes’, where the ‘flat dimen-
sions’ of the landscape represent the genetic variability and the
epistatic interactions between amino acids as described by the
BN, and the scaling, the ‘height of the peaks’ or ‘fitness’ represents
the predicted fitness of a particular sequence under the modeled
selective pressure. A FL is normalized relative to a fitness value
of 1 for reference sequence HIV-1 HXB2.

Here, we estimated one cross-sectional and three longitudinal
indinavir fitness functions, using epistatic interactions that were
learned by BNT, BNP and BND networks.

The cross-sectional FL model Fcross was estimated using cross-
sectional sequences with indinavir experience by first deriving the
network structure of BNT and second modeling the evolution of PN
into PT. Given that the naive population (PN) included more se-
quences compared to the treated population (PT), a naive dataset
was created by sampling sequences from PN as described before
(Deforche et al., 2008a). This sampling was guided by a Neighbour
Joining phylogenetic tree built with PAUP on the training data, and
assigned more weight to sequences from the naïve population that
were epidemiologically linked to the treated population. This pro-
cedure allowed for selection of sequences from naïve patients that
more closely resemble the epidemiology background of the se-
quences from treated patients, thus learning amino acid changes
that are mainly a consequence of evolution under drug selective
pressure, thereby correcting for different epidemiological
dependencies.

The longitudinal FLs (FlongT, FlongP and FlongD) were esti-
mated using the same population (PL) of longitudinal sequence
pairs of patients on indinavir treatment to scale the fitness land-
scape in the second step. No sampling procedure to correct for epi-
demiological bias was needed because sequence pairs were
derived from the same patient. The respective longitudinal models
differed in the sequence population from which the epistatic inter-
actions were learned in the first step. The model FlongT used the
network structure of BNT, the model FlongP used the network
structure of the BNP and the model FlongD used the network struc-
ture of BND.

2.4. Calculating parameters for genotypic prediction

2.4.1. From longitudinal and cross-sectional fitness landscapes
For each sequence and per fitness landscape, one parameter

denoting viral fitness and four parameters related to the genetic
barrier to resistance were computed (Fig. 1). Predicted viral fitness
taken as the common logarithm scale (LogF), was considered as the
quantification of drug susceptibility. The genetic barrier represents
the evolutionary distance required for the virus to become a drug
resistant virus. The genetic barrier to indinavir resistance was cal-
culated by simulating the evolution over a FL until it was consid-
ered resistant, and defined as the average time of 100
simulations. The criterion for indinavir resistance was the selection
of a Major Resistance Mutations (MRM) 46I, 46L, 82A, 82F, 82T or
84V (Johnson et al., 2011). Measures of the genetic barrier were the
number of generations (GR) and number of mutations (MR) to the
appearance of any indinavir-MRM. Another measure of genetic
barrier to resistance was the number of generations and the num-
ber of mutations during simulated evolution to reach a fitness
threshold (GF and MF respectively). The fitness threshold was de-
fined as the average fitness after the appearance of a major resis-
tance mutation during the 100 simulations and over all sequences.

2.4.2. GSS from Rega V8.0.1 and HIVdb V2.4.9
Genotypic Susceptibility Scores (GSS) were calculated using two

publicly available genotypic resistance interpretation system (IS)
(Rega v8.0.1 and HIVdb v4.2.9). According to Rega v8.0.1 (http://
regaweb.med.kuleuven.be/software/rega_algorithm), a baseline
sequence was assigned a weighted score for each drug based on
the 3 level categories. Susceptible (S): GSS = 1 for all drugs except
1.5 for a boosted PI; intermediate resistant (I): GSS = 0.5 (un-
boosted PI, nucleoside reverse transcriptase inhibitors (NRTIs)
and nucleotide reverse transcriptase inhibitors (NtRTIs) and etravi-
rine) or 0.75 (boosted PI) or 0.25 (Non-nucleoside reverse trans-
criptase inhibitors (NNRTIs) except etravirine or entry inhibitors
(EI)); otherwise assigned resistant (R): GSS = 0. According to HIVdb
(http://hivdb.stanford.edu/DR/asi/index.html), a baseline genotype
was assigned a GSS according one of the five levels that are in-
cluded in the algorithm. The score was 1 for susceptible, 0.75 for
potential low-level resistance, 0.5 for low-level resistance, 0.25
for intermediate resistance and 0 for high resistance. The drug zal-
citabine (DDC) is not featured in the current Rega and HIVdb ver-
sions since it was removed from the market due to safety
concerns. However, since this drug was used by patients in our
evaluation dataset the scores from the last Rega algorithm (Rega
v6.4.1) that included DDC were used. Similarly, the score for the
drug amprenavir, also no longer supported by the current algo-
rithms, was substituted by scores of its pro-drug fosamprenavir
(Figs. 1–3).

2.5. Evaluating the fitness landscapes

The performance of the four fitness models was evaluated in
different validation experiments performed on three evaluation se-
quence populations that were not included in the training data.
These experiments encompassed the comparison of estimated fit-
ness, predicting evolution and prediction of virological outcome.

2.5.1. Pairwise comparison of estimated fitness values
The three longitudinal and one cross-sectional FLs were applied

to the PI experienced sequence population PE to compute viral fit-
ness (LogF). Pairwise comparisons of fitness values were done by a
linear regression model and corrected for the effect of subtype.
Goodness of fit for the FL models was assessed by the squared cor-
relation coefficient (R2) and further explored by scatter plots.
Descriptive statistics was used to analyze results from each of
the fitness function.

2.5.2. Evaluating evolution predicted by the fitness landscape
The evaluation population PV of longitudinal sequences was

used to predict mutation evolution. The population PV consisted
of pairs of 626 longitudinal sequences from 313 patients. The abil-
ity to predict observed evolution during indinavir treatment,
according to models Fcross, FlongT, FlongP and FlongD was ex-
plored using the baseline sequence from the dataset PV. Correla-
tion between predicted evolution and the observed evolution in
the follow-up sequence from PV was done using a linear model
correcting for multiple testing.

2.5.3. Prediction of treatment outcome in short and long term
A third evaluation was done based on the parameters LogF, GR,

MT, GR and GF of the cross-sectional and longitudinal FLs com-
pared to Rega IS and HIVdb IS GSS parameters (Fig. 1) for their pre-
dictive performance on a risk of virological failure at short (week
12) and long term (week 48) using logistic regression. A baseline
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Fig. 2. Description of the total regimen genotypic susceptibility score as determined by the Rega v8.0.1 weighted algorithm for all treatment change episodes (TCEs) used for
prediction of week 48 virological outcome. The distribution was similar to that of week 12 TCEs (Supplementary Fig. 9).
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Fig. 3. Description of the indinavir genotypic susceptibility score (GSS) as deter-
mined by the Rega v8.0.1 weighted algorithm for all treatment change episodes
(TCEs) used for prediction of week 48 virological outcome. A score of 0, 0.5, 0.75, 1
and 1.5 is assigned for resistant, intermediate, intermediate-boosted indinavir,
susceptible and susceptible-boosted, respectively. The distribution was similar for
the week 12 TCEs (Supplementary Fig. 10).
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genotype from the treatment change episodes (sequence popula-
tion PC) was used to compute these parameters. For both time
points, virological success was defined as achievement of a viral
load less than 500 copies/ml or 2 log drop versus baseline viral load
(Zazzi et al., 2011). In addition, any therapy change under a detect-
able viral load was considered a treatment failure. Logistic regres-
sion models were corrected for the possible confounders; baseline
viral load, previous PI exposure, the time lag between the start of
therapy and the follow-up viral load and GSS of the background
regimen excluding the indinavir GSS.
2.5.4. Performance of logistic regression models
In order to evaluate the accuracy of the prediction of short and

long term virological failure, performance of each FL parameter
was estimated using a 10-fold receiver operating characteristic
(ROC) curve analysis wherein the area under the curve (AUC)
was used as performance measurement. The FL parameters were
compared to the Rega and HIVdb indinavir GSS after correcting
for GSS of the backbone regimen.

2.5.5. Survival analysis
A final analysis constituted a Kaplan–Meier analysis of the TCEs

to test how GSS, LogF, GR, MT, GR and GF could be useful in pre-
dicting time to viral suppression. The proportions of TCEs achiev-
ing treatment success were plotted against time to suppression
of viral load. For this purpose, both the GSS from the Rega and HIV-
db were grouped into three; 0–1, >1–2 and >2. For the genotypic
parameters from the FLs, the values were grouped per quartile
and the difference in median survival time tested. Further, the
Cox proportional hazards model was applied to adjust for other
covariates including baseline viral load and the time lag between
the start of therapy and the follow-up viral load.

3. Results

3.1. Sequence data and subtype distribution

In total 17,539 viral sequences were used in this study for model
training or evaluation. More than half of the sequence dataset be-
longed to HIV-1 subtype B (74%), followed by subtype G (11%). The
detailed subtype distribution of all eight sequence populations is
shown in Supplementary Fig. 3. When testing for equal population
proportions, subtype B distribution was not significantly different
(p-value = 0.08) in the training sequence data sets used for each of
the Bayesian Networks (PT, PP and PD) but significantly different
to the naïve population (PN) (p-value = 0.04). The sequence distri-
butions of the evaluation datasets (PE, PC and PV) were however sig-
nificantly different from the training datasets (p-value < 0.05).

3.2. Epistatic interactions learned from the Bayesian Networks

The networks BNT, BNP and BND mapped 89 mutations at 48
sites, 90 mutations at 47 sites and 90 mutations at 47 sites, respec-
tively. A BN was not constructed from the longitudinal sequence
data alone as in this population mutations were not sufficiently
abundant to model all the epistatic interactions of different amino
acid positions in protease. Mutations 20T/V/M, 30N, 33F, 35N/G,
36V, 48V, 53L, 69RI/Y, 71I, 74A, 88D/S and 92R/K were present in
BNP and BND but absent in BNT.



Table 1
Coefficient of determination (R2 value) from the comparison of fitness values for each of the sequences from population PE. Per sequence, fitness values calculated according to the
respective fitness models were compared. R2 values were determined using a linear regression model. All correlations were significant with p-value of less than 0.01. Introducing
subtype as correction factor improves the R2 value considerably.

Model Fcross vs. FlongT Fcross vs. FlongP Fcross vs. FlongD FlongT vs. FlongP FlongT vs. FlongD FlongP vs. FlongD

Before subtype correction 0.55 0.42 0.69 0.88 0.74 0.73
After subtype correction 0.77 0.68 0.78 0.89 0.81 0.78
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3.3. Fitness landscape models and their comparison

The fitness values, LogF, were obtained by applying Fcross,
FlongT, FlongP and FlongD to each sequence in the PE dataset.
The mean of LogF for FlongT, FlongP and FlongD of the PE dataset
was not significantly different. However, LogF of the cross-sec-
tional fitness function had significantly different mean compared
to the longitudinal fitness functions (Supplementary Fig. 4). We
also found a significant correlation between fitness derived from
the fitness function learned entirely from cross-sectional data,
Fcross, with the fitness according to the three landscapes learned
from indinavir longitudinal sequences, FlongT, FlongP and FlongD
(Table 1). Surprisingly, the best correlation was found between
Fcross and FlongD, which used the epistatic interactions learned
by excluding sequences from indinavir experienced patients. The
pairwise correlation coefficients (R2) ranged from 0.42 to 0.88.

Correlation values increased when the subtype factor was taken
into account in the linear regression model (R2 values ranging from
0.68 to 0.89). All pairwise comparisons, with and without subtype
correction, are shown in Fig. 4 and Supplementary Figs. 5–7. Even
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Fig. 4. Evaluation of linear relationship between predicted fitness of the evaluation
sequence population PE, comparing Fcross with FlongD. Before (Panel A) and after
(Panel B) correction for subtype as indicated.
after correcting for subtype, there still appeared some banding pat-
terns in the correlation curves. This was more evident comparing
Fcross versus FlongT and FlongP than in the comparison among
the other FLs. The difference could be explained by resistance
mutations which were present in different proportion in the se-
quence populations used for the different landscapes (Table 2).

3.4. Evaluating evolution predicted by fitness landscape

The ability of each FL to predict viral evolution under indinavir
selective pressure was evaluated using an independent dataset of
longitudinal sequences (PV) sampled before and after treatment
with indinavir. Predicted evolution according to Fcross, FlongT
FlongP and FlongD correlated significantly with the observed evo-
lution during indinavir treatment for 22, 25, 16 and 18 mutations,
respectively (Table 3). Most major mutations included in the IAS-
USA list were significantly predicted for all FLs. Mutations 10V,
46L, 71T, 73S and 82F for Fcross, 71T and 73S for FlongT, 46L and
71T and 73S for FlongP and 10V by FlongD were not significantly
predicted although the predictions were significant before correct-
ing the p-value for multiple testing. Negative correlations were not
found for any mutation in Fcross. For a few mutations in longitudi-
nal landscapes, negative correlations were found, meaning that
these mutations were more often predicted than observed. This
was the case for mutations; 55R in FlongT; 24I, 55R and 71V in
FlongP and 54V, 60E, 71V, 73S, 74S, 84V and 90M in FlongD. Most
minor IAS mutations were also significantly predicted, and several
other mutations, not in the IAS-USA list were also significantly
predicted.

3.5. Evaluation of fitness landscapes with clinical outcome

3.5.1. Characteristics of TCEs used
Descriptive analysis of used TCEs is shown in Table 4. The

majority of patients were treated with a combination of indinavir,
stavudine and didanosine (10%) or indinavir, lamivudine and
Table 2
Mutations which were more significantly prevalent in the treated longitudinal
sequences used to scale the fitness landscapes FlongT, FlongP and FlongD, than the
sequence used to scale Fcross.

Position % With mutation

2nd Sequence of PL PT p-value

10I 46.12 23.2 <0.01
46L 16.44 6.6 <0.01
46I 30.14 13.12 0.000
54V 23.74 11.6 <0.01
55R 5.02 1.95 0.02
71T 12.79 7.28 0.02
71V 26.03 12.45 <0.01
73S 8.68 2.03 <0.01
74S 8.68 3.39 <0.01
77I 35.16 24.64 0.02
82A 28.31 14.14 <0.01
84V 10.96 3.22 <0.01
85V 9.13 2.2 <0.01
90M 28.77 10.16 <0.01
93L 44.75 33.36 0.03



Table 3
Mutations for which predicted variation correlated significantly with observed
evolution during indinavir treatment (correcting for false discovery rate of 0.05), in
the evaluation sequence pairs (PV) using Fcross, FlongT, FlongP and FlongD fitness
functions. The number (N) of baseline sequences without the mutation (M) of which n
developed the mutation during treatment. P: p-values for correlation between
predicted probability for selection of the mutation and observed selection. Indinavir
IAS-USA mutations are shown in bold; the major indinavir IAS-USA mutations are in
bold italics. NS: mutation not significantly predicted and -; mutation not present in
this particular fitness landscape.

M N N Fcross FlongT FlongP FlongD
P P P P

10F 309 9 NS 1.31E-04 NS 7.21E-03
10I 251 67 9.23E-16 2.21E-11 8.37E-09 1.99E-08
10V 302 13 NS 5.99E-04 1.47E-03 NS
13V 262 24 1.60E-02 NS NS NS
15V 251 21 9.52E-05 1.06E-02 6.57E-03 NS
20I 303 18 1.35E-02 1.98E-10 1.66E-09 3.16E-07
20R 297 19 1.36E-03 2.73E-09 4.20E-07 2.95E-06
24I 305 17 6.78E-07 1.02E-02 2.10E-03 –
33I 312 5 NS NS NS 2.41E-03
35D 247 18 1.09E-02 NS 4.21E-03 NS
36L 308 2 1.57E-04 NS NS NS
37D 246 17 2.37E-04 3.34E-03 7.52E-05 NS
37E 305 5 NS 7.42E-07 NS NS
43T 312 15 1.35E-02 NS – –
46I 281 63 2.42E-09 7.52E-07 1.14E-11 6.64E-10
46L 294 23 NS 5.01E-02 NS 1.05E-03
54V 288 46 7.56E-16 3.68E-02 9.64E-09 2.02E-02
55R 307 20 4.22E-07 1.47E-06 4.97E-05 6.09E-07
57K 285 11 – 2.40E-05 4.73E-05 2.02E-02
58E 305 12 1.03E-02 NS 3.48E-05 5.34E-02
60E 284 15 NS NS NS 3.34E-02
62V 236 54 4.91E-08 1.01E-09 3.43E-10 6.64E-10
63H 310 2 4.02E-03 NS NS NS
63P 107 34 4.32E-03 4.55E-03 NS 7.21E-03
63T 291 3 NS 6.80E-03 3.28E-03 7.21E-03
64V 264 20 NS NS NS NS
65D 303 4 NS NS NS 3.15E-02
66F 310 3 NS 4.72E-02 NS NS
69Q 308 4 NS 5.39E-02 NS NS
71T 282 15 NS NS NS 1.20E-02
71V 266 59 9.52E-16 3.24E-17 8.62E-05 9.23E-09
72L 304 18 1.79E-04 3.00E-03 – –
72T 300 5 NS NS NS 2.63E-02
73S 293 36 NS NS NS 3.15E-02
74S 311 13 NS NS NS 3.15E-02
82A 278 58 2.66E-08 7.00E-09 2.04E-06 4.53E-06
82F 308 4 NS 6.02E-04 – –
84V 297 21 8.65E-07 1.57E-04 2.25E-05 6.77E-04
85V 307 15 NS NS NS 4.53E-06
90M 255 73 2.36E-14 1.22E-05 2.25E-05 1.08E-09
93L 216 32 NS 5.01E-02 NS NS
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zidovudine (9%) at the first time-point (Supplementary Fig. 8).
These therapies were administered in the period 1996–2006.
Table 4
Description of TCE parameters used for evaluation of fitness landscape mod

Parameter Median (inter

Week 12

Baseline total GSS (Rega) 2.50 (2.00–3.5
Baseline IDV GSS (Rega) 1.50 (1.00–1.5
Baseline total GSS (HIVdb) 2.00 (1.50–3.0
Baseline IDV GSS (HIVdb) 1.00 (0.75–1.0
Baseline VL 23,110 (4239
Follow-up VL 400 (80–2,169
Time lag between start of TCE and follow-up VL 8.86 (5.71–12
Follow-up duration 91 (64–107) d
Therapy duration 315 (144–573
Therapy year 2000 (1999–2

GSS, genotypic susceptibility score; IDV, indinavir; VL, viral load; TCE, tre
The frequency of the regimen-specific GSS made by combining
GSS of the backbone regimen with that of indinavir is shown in
Fig. 2 and Supplementary Fig. 9. The majority of patients had a reg-
imen-specific GSS greater than 2 and responded well to therapy.
Baseline sequences were mainly predicted as susceptible to indina-
vir and were responders (Fig. 3 and Supplementary Fig. 10). There
was a significant but weak correlation between regimen-specific
GSS and the indinavir GSS (R2 = 0.43; p-value < 0.01 and
R2 = 0.33; p-value < 0.01 for Rega and HIVdb, respectively).

3.5.2. Prediction of virological failure in the 12 weeks analysis
For the FL parameters used, the median score (Interquartile

range) for the baseline sequences of the week12 dataset are shown
in Table 5.

A logistic regression model was used to evaluate the performance
of each of these FL parameters and the indinavir GSS in predicting
therapy failure at week 12. A higher Rega indinavir and HIVdb indi-
navir GSS at baseline was associated with lower odds of virological
failure at week 12, i.e. 0.44 (0.27–0.70, p-value < 0.01) and 0.24
(0.11–0.53, p-value < 0.01), respectively. Concerning the FL parame-
ters, for all models, a higher fitness was associated with higher odds
of virological failure (Table 6). A higher genetic barrier to resistance,
measured as GR, GF, MF and MR were significantly associated with
lower odds of virological failure in all FLs (except MR from FlongT).

3.5.3. Prediction of virological failure in the 48 weeks analysis
Similarly, for patients who had a follow-up viral load at end-

point two, we analyzed the association between the parameters
above with risk of therapy failure at week 48.

A unit increase in both Rega indinavir GSS and HIVdb indinavir
GSS was associated with lower probability of virological failure,
with an odds ratio of 0.22 (0.11–0.39 p-value < 0.01) and 0.12
(0.05–0.32 p-value < 0.01), respectively.

For the FL parameters, a unit change of LogF, GF, MF and GR
were predictive of virological failure for all models (Table 6). With
these models a higher fitness was associated with higher odds of
virological failure, and an increase in genetic barrier parameters
GF, MF and GR were associated with lower odds ratio of virological
failure (Table 6).

In case of genetic barrier to resistance measured as MR, they
were only predictive in the models Fcross, FlongD (Table 6). MR
from FlongT and FlongP could not significantly predict virological
failure, although the trend was there (p-value = 0.07).

3.6. Performance of logistic regression models

For week 48, the mean of the AUC of 10-fold cross-validation for
each FL parameter in the four FLs model, and indinavir GSS for Rega
els.

quartile range)

Week 48

0) 2.50 (2.00–3.50)
0) 1.00 (1.00–1.50)
0) 2.25 (1.50–3.00)
0) 1.00 (1.00–1.00)

.00–129,000) copies/ml 23,110 (3,395–112,216) copies/ml
) copies/ml 100 (50–6,965) copies/ml

.57) weeks 40.00 (28.29–46.43) weeks
ays 300.00 (231–353) days
) days 413 (276–728) days
002) 2000 (1999–2002)

atment change episode.



Table 5
Median values (interquartile range (IQR)) for fitness landscape (FL) parameters derived from treatment change episodes used to predict virological failure at 12 and 48 weeks.

Parameter FL Fcross FlongT FlongP FlongD
Week Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Log F 12 1.66 (1.44–2.11) 1.24 (1.12–1.48) 1.28 (1.15–1.52) 1.37 (1.18–1.73)
48 1.63 (1.43–2.03) 1.23 (1.11–1.45) 1.27 (1.15–1.50) 1.36 (1.18–1.68)

GR 12 163.22 (67.98–201.10) 191.8 (104.8–245.5) 183.1 (142.60–228.70) 170.9 (137.2–198.7)
48 166.75 (78.23–201.26) 199.9 (109.20–187.7) 181.1 (140.1–228.7) 170.60 (141.80–197.40)

MR 12 3.86 (1.92–4.62) 3.01 (1.96–3.78) 2.93 (2.37–3.68) 3.22 (2.64–3.81)
48 3.92 (2.02–4.55) 2.99 (1.93–3.70) 2.89 (2.35–3.63) 3.04 (2.71–3.76)

GF 12 166.01 (74.96–209.37) 559.8 (372.7–673.5) 587.40 (406.40–695.30) 390.4 (257.0–468.70)
48 170.07 (91.04–209.56) 559.2 (394.70–686.70) 592.50 (430.0–696.70) 405.30 (281.70–475.60)

MF 12 4.06 (2.27–5.08) 8.90 (6.23–10.32) 9.12 (6.64–10.43) 7.5 (5.01–8.80)
48 4.19 (2.58–5.11) 8.99 (6.63–10.47) 9.33 (6.88–10.49) 7.68 (5.38–8.84)

Table 6
Logistic regression analysis for predicting risk of virological failure at week 12 and 48 using each parameter of the fitness landscapes (FL) separately. The odds ratio (OR) and its
95% confidence interval (CI) are calculated per unit increase in LogF, MR and MF or per 100 generations in case of GR and GF. The model was adjusted for the confounders, baseline
viral load, time lag between the start of treatment change episode, previous protease inhibitor exposure and the time of follow-up viral load and for the total genotypic
susceptibility score of the background regimen.

FL Fcross FlongT FlongP FlongD

Parameter Week OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Log F 12 1.74 (1.12–2.69) 0.01 2.13 (1.07–4.35) 0.03 2.09 (1.11–4.12) 0.03 2.02 (1.08–3.77) 0.03
48 2.63 (1.53–4.51) <0.01 3.77 (1.73–8.64) <0.01 4.16 (1.89–9.86) <0.01 3.18 (1.52–6.64) <0.01

GR 12 0.60 (0.44–0.83) <0.01 0.78 (0.62–0.98) 0.04 0.67 (0.50–0.88) <0.01 0.68 (0.49–0.95) 0.02
48 0.58 (0.40–0.83) <0.01 0.77 (0.59–0.99) 0.05 0.73 (0.54–0.98) 0.04 0.65 (0.45–0.94) 0.02

MR 12 0.79 (0.69–0.92) <0.01 0.87 (0.75–1.01) 0.07 0.82 (0.69–0.96) 0.02 0.82 (0.69–0.98) 0.03
48 0.77 (0.66–0.91) <0.01 0.86 (0.72–1.01) 0.07 0.84 (0.71- 1.01) 0.07 0.80 (0.67–0.97) 0.02

GF 12 0.82 (0.71–0.94) <0.01 0.86 (0.76–0.97) 0.01 0.85 (0.75–0.96) <0.01 0.78 (0.64–0.94) 0.01
48 0.56 (0.39–0.80) <0.01 0.82 (0.72–0.93) <0.01 0.80 (0.70–0.92) <0.01 0.69 (0.56–0.87) <0.01

MF 12 0.82 (0.71- 0.94) <0.01 0.89 (0.82–0.97) 0.01 0.89 (0.82–0.97) <0.01 0.88 (0.79–0.97) 0.01
48 0.77 (0.66–0.90) <0.01 0.86 (0.78–0.95) <0.01 0.85 (0.78–0.94) <0.01 0.82 (0.72–0.92) 0.02

Table 7
Area under the curve (AUC) for prediction models from the Receiver Operating
Characteristic (ROC) analysis for week 12 and 48 (a) the expert systems and (b)
genotypic parameters of each fitness landscape (FL). Wilcoxon rank test was done
between Rega IDV GSS with HIVdb IDV GSS (A) or Rega IDV GSS with Log F, GR, MR,
GF and MF. All models were not significantly different in their AUC. IDV, indinavir;
GSS, genotypic susceptibility score).

A

Algorithm Week AUC for IDV GSS

Rega 12 0.67
48 0.71

HIVdb 12 0.67
48 0.69

B

Week Fcross FlongT FlongP FlongD

LogF 12 0.65 0.67 0.66 0.66
48 0.65 0.67 0.66 0.66

GR 12 0.66 0.65 0.6 0.65
48 0.65 0.66 0.62 0.65

MR 12 0.66 0.64 0.63 0.65
48 0.65 0.66 0.63 0.65

GF 12 0.67 0.66 0.66 0.66
48 0.65 0.65 0.66 0.66

MF 12 0.68 0.65 0.65 0.66
48 0.65 0.65 0.66 0.65
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and HIVdb are shown in Table 7 and ROC curve in Supplementary
Figs. 11 and 12. All models were predictive, but neither model was
better than the other in predicting treatment response in both
week 12 (data not shown) and week 48 datasets.

3.7. Survival analysis

To further illustrate the genotypic characteristics of the data
used for predicting virological outcome, we used Kaplan–Meier
curves (Fig. 5). The median time to reach viral-suppression below
500 copies/ml or a decrease of 2 or more logs of viral load during
follow-up was 10 weeks. The median survival time of the three
GSS groups according to Rega indicated that patients with higher
baseline GSS reached an undetectable viral load significantly ear-
lier than those with a lower GSS (Table 8). A similar significant
trend was shown by the interquartile groups of the GR and MR
FL parameters indicating that the higher the remaining genetic
barrier the earlier undetectable viral load was reached. For the
GF, the less fit viruses required a shorter time to be suppressed.
The discriminative power of the interquartile groups of LogF and
MF with p-value 0.08 and 0.09, respectively was not significant.

The overall models remained significant after adjusting for
covariates using the Cox proportional hazard model, although the
individual FL parameters became insignificant when combined in
the model (data not shown).
4. Discussion

In this study, novel longitudinal fitness landscapes (FLs) were
compared to the more conventional cross-sectional FL for patient
receiving indinavir-containing combination treatment, and found
to have the power to predict both the failing genotype and virolog-
ical outcome. The technique of Bayesian Network (BN) Learning
was used to investigate which mutations and polymorphisms ap-
pear together more than due to chance and epidemiology alone,
a characteristic assumed to reflect epistatic interactions between
the amino acids at these different positions of the HIV protein in
question. Consequently, the BN denotes the qualitative representa-
tion of epistatic interactions mapped from statistical associations
between amino acids. Longitudinal sequences from patients failing
indinavir were then used to scale the fitness landscape. The fitness
function representing the fitness landscape allows obtaining a
quantitative estimate of the fitness of a particular sequence. Thus,
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Fig. 5. Kaplan–Meier curve to show associations between the three indinavir genotypic susceptibility score (GSS) groups from Rega and HIVdb derived indinavir GSS or the
quartile-groups of the indinavir cross-sectional FL parameters (LogF, GR, MR, GF and MF) derived from the treatment change episodes at 48 weeks, versus the time to viral-
suppression below 500 copies per ml or a decrease in viral load of 2 logs or more. Adding all the FL parameters to a Cox proportional hazard model resulted in an overall
significant model, although the individual parameters became insignificant.

R.Z. Sangeda et al. / Infection, Genetics and Evolution 19 (2013) 349–360 357
the fitness landscape has to be viewed as a map representing this
fitness for the entire sequence space; it also allows quantifying
the genetic barrier to resistance.

HIV-1 fitness is a parameter that defines the replicative capacity
in the context of environmental conditions like the presence of
drug in a patient. The terms epistasis and fitness in this paper refer
to statistical properties as conceptualized in population genetics.
Our estimated in vivo fitness value is calculated based on the
assumption that the increase in the prevalence of a mutation or
pattern of mutations in sequences from treated compared to drug



Table 8
Time to virological suppression below 500 copies/ml or a decrease of 2 or more logs of
viral load for groups of parameters. For Rega and HIVdb genotypic susceptibility score
(GSS), the cut off was 0–1, >1–2 and >2 for group 1, 2 and 3, respectively. FL
parameters were divided into 4 groups according to interquartile values. For Rega and
HIVdb GSS 4th group was not applicable (NA).

Parameters Time to virological suppression in weeks p-value

Group1 Group 2 Group 3 Group 4

Rega – 17.71 8.79 NA <0.01
HIVdb – 8.71 9.14 NA 0.01
Log F 8.14 5.71 7.71 8.71 0.08
GR 21.14 9.14 8.29 9.00 0.01
GF 14.14 10.86 8.86 8.71 0.05
MR 21.86 8.86 8.36 7.86 <0.01
MF 16.86 10.93 8.00 9.71 0.09
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naive patients reflects an increase in fitness of the virus under drug
selective pressure. The drug-pressure exerted on the virus drives
adaptive evolution and selects for resistant viruses with higher fit-
ness. In the past, using a dataset of genotype–phenotype pairs, we
have shown that in vivo fitness estimated from a fitness landscape
for the drug nelfinavir correlated well with in vitro resistance fold
change phenotype (Deforche et al., 2008a). Not only major drug
resistance mutations, but also polymorphic mutations contribute
to this fitness, since they can increase fitness both in the presence
and absence of drug. In the past we also showed that the estimated
fitness in our protease fitness landscape models correlated signifi-
cantly with viral load in drug naïve patients, and this correlation
was linked to the presence of such polymorphic mutations (Theys
et al., 2012). Thus, our fitness estimate can be considered an in vivo
resistance phenotype, capturing both phenotypic resistance and
intrinsic replication capacity (in the absence of drug). The fitness
landscapes also allow quantifying the genetic barrier to resistance.
A FL is therefore a good tool for evaluating both the susceptibility
of the virus for a drug and the individualized genetic barrier of that
virus for that drug, both of which can be predictive of therapy fail-
ure, because drugs with lower genetic barrier are more likely to
cause therapy failure. We have previously reported that a higher
genetic barrier derived from such a FL was significantly associated
with higher viral load reduction in the short term and with lower
odds of virological failure on long term (Deforche et al., 2008b;
Theys et al., 2010).

Our previous FLs were constructed using cross-sectional data,
comparing sequences from drug-naïve patients with sequences
from patients experienced with the drug being investigated. To
avoid a bias from the epidemiological connection between muta-
tions rather than epistatic fitness interaction, a phylogenetic tree
can be used to sample sequences from naïve patients that are epi-
demiologically related to sequences from treated patients. How-
ever, to completely remove this bias, FLs should be learned from
longitudinal sequences (Deforche et al., 2006). These sequences
are more informative than cross-sectional data because all differ-
ences in the longitudinal sequence pairs represent mutations that
survived under the selective pressure of the therapy, even though
they might arise in two ways, through stochastic effects or through
positive selective pressure from the drugs. With such sequences
coming from the same patient, the analysis was not subjected to
epidemiological bias, e.g. a difference in evolutionary history. Dif-
ferences in cross-sectional data also include the natural variation
(which can be considered noise in this context) of the entire drug
naïve HIV-1 population and hence modeling the fitness function
requires a lot more sequences to separate significant signal from
the noise. Nevertheless, longitudinal sequences are more difficult
to obtain compared to the cross-sectional sequences due to the
inherent difficulty in following the patient and the confidential
nature of patient data.
We hypothesized that in the absence of sufficient cross-sec-
tional or longitudinal sequence data from patients failing a new
drug, we can map epistatic interactions in the targeted protein
by training a BN based on cross sectional sequences from patients
experienced with other drugs targeting the same protein, while
using the scarce longitudinal sequences from patients treated with
the new drug under investigation to scale the FL. The essence of
using these sequence populations was that more amino acid inter-
actions can be learned from drug selective pressure with other
drugs acting on the same HIV protein, than from the limited num-
ber of longitudinal data available of only the drug under investiga-
tion. This is a valuable option for new drugs for which sequence
data are limited but that inhibit a protein for which extensive data
from other drugs is available. The drug indinavir was chosen as a
model drug, because sufficient data were available for both
cross-sectional and longitudinal FL construction and evaluation.

For all models, epistatic interactions were learned from three
sets of cross-sectional data of HIV-1 sequences: from patients (i)
failing the drug under investigation, in this case indinavir (BNT
used in Fcross and FlongT), (ii) failing any drug that targets the
same gene as the drug under investigation (BNP used in FlongP),
or (iii) failing any drug that targets the same gene except data from
patients failing the drug under investigation (BND used in FlongD).
In the cross-sectional fitness landscape, cross-sectional sequences
were then used to scale Fcross, while for all the longitudinal land-
scapes, we used the same small set of longitudinal data (Flong) for
this scaling step. The FL FlongD mimics the situation of a salvage
drug for which not sufficient cross-sectional data are available to
build a BN. Although most of the mutations known to be involved
in indinavir drug resistance are included in our longitudinal or
cross-sectional FLs, the mutation lists are slightly different. This
can be explained by the different mutations included in the BN.
Essentially our three BNs modeled the same mutations, except that
some mutations present in BNP and BND were absent in BNT.
These extra mutations correspond to mutations known to be asso-
ciated with resistance to PIs other than indinavir for instance 20T/
V/M, 33F, 53L and 71Y are selected by the drug atazanavir, 30N is
predominantly a major and 88D/S a minor nelfinavir resistance
mutation, 48V is selected by atazanavir and saquinavir. This shows
that more interactions can be captured when pooling data from
more than one protease inhibitor.

Cross-sectional and longitudinal models were compared to each
other in terms of the estimated fitness predicted from the same set
of sequences. Since the BN maps epistatic interactions among
resistance mutations and polymorphic amino acids including from
different subtypes, we anticipated that the FL should be able to
capture the effect of drug selective pressure in different subtypes.
To investigate how reproducible the FLs were across subtypes, we
used an evaluation sequence set with a different treatment history
and subtype distribution than the training dataset. Despite a signif-
icant subtype difference between the training and evaluation se-
quences the estimated fitness according to the different FLs
correlated well with each other. However, at log fitness values
above 1.5 there appeared to be some banding pattern in the plots
(Supplementary Fig. 6). Separate correlation bands for fitness val-
ues of subtype B sequences versus other subtypes clearly indicate
that the linear regression model needs to be corrected for a sub-
type factor (right panels of Fig. 4 and Supplementary Figs. 5–7). Be-
cause our FL models inferred fitness for mutation patterns of
evolutionary information, the inter-subtype variability may intro-
duce a bias. We assume this is because one subtype will not evolve
into a different subtype due to drug selective pressure only, and
within a patient in a short time interval, such that the impact of
subtype dependent polymorphisms that are not selected for during
therapy (for example because they are the wildtype in that
subtype) will not be present in our fitness landscapes. We were
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however unable to compare the predictive power within each sub-
type because except for subtype B, there were not enough data
available.

All four FLs could predict the accumulation of mutations com-
paring the baseline sequence with a follow-up sequence. Of the
correctly predicted mutations, 10I/V, 20R, 24I, 46I/L, 54V, 71T/V,
82A/F, 84V and 90M correspond to those listed in the updated
mutation list for indinavir (Johnson et al., 2011). The appearance
of major indinavir mutation 84V was significantly more predicted
(negatively correlated) than observed using FL model for which the
epistatic interactions (BND) were trained on PI treatment data that
excluded patients failing on indinavir (PD). The following indinavir
IAS mutations, 20M, 32I, 36I, 76V and 82T were present in some of
the fitness landscapes but not significantly predicted. The follow-
ing indinavir IAS mutations; 10R and 73A were not present in
any of the fitness landscapes.

Using an independent set of clinical data, FLs were evaluated for
predictive performance in the short term (12 weeks) and long term
(48 weeks). A unit increase in both Rega and HIVdb indinavir GSS
at baseline was significantly associated with lower odds of virolog-
ical failure in both short and long term. Likewise, the fitness
parameters predictive of treatment failure in all longitudinal mod-
els were those pertaining to the fitness and genetic barrier to a fit-
ness threshold (LogF, GF, and MF) while the measure of genetic
barrier to resistance, GR and MR were predictive for all FLs except
for GR the FL model FlongT (both short and long term) and FlongP
(only long term). FlongT, the fitness landscape for which both the
epistatic interactions and the fitness scaling were modeled using
sequences that had experienced indinavir selective pressure, is
not performing as good at the other fitness landscapes. We can
only speculate that this may be due to the subtype effect, or to
the fact that there were fewer training data to catch the epistatic
interactions, in comparison with the other longitudinal fitness
landscapes.

We analyzed the data used to evaluate the performance of the
FL and GSS from expert systems for its ability to predict median
survival time across interquartile groups of FL parameters and
GSS cut-offs. The median time to maximal suppression was around
10 weeks. We could significantly distinguish time to suppression
based on the various GSS groups and interquartile parameters of
the FLs. However, we could not rule out the influence of other fac-
tors that determine virological failure such as adherence and sub-
optimal doses.

This study is a proof of concept, showing how longitudinal indi-
navir data can be used to estimate the in vivo HIV-1 fitness function
under indinavir selective pressure. Because drugs within the same
drug class select mutations which show similar interactions, the
epistatic interactions may be modeled with interactions induced
by other drugs from the same class on the same protein. Mutations
derived from the sparse longitudinal data are then used to scale the
FL, and it is this scaling that would then be useful to derive individ-
ualized genetic barrier for that new drug and hence provide a mod-
el to predict therapy success given a baseline sequence from a
patient.

Our model of a FL, given its power to predict the failing geno-
type, can be a useful tool to predict therapy outcome in re-
source-limited settings, albeit in the presence of at least one
genotype at some point before the failing treatment. The combina-
tion of FL models with other confounders such as adherence, viral
load and CD4+ T-cell count history, age, drug metabolic markers
and treatment history should improve the prediction of therapy re-
sponse and resistance development in general. The cost-effective-
ness of this approach in resource-limited settings compared to
routine genotyping deserves further investigation.

Further studies are needed to validate the clinical applicability
of these models to contemporary ART including PIs with a high
genetic barrier to resistance. For these new models an improved
simulator is planned to enable pairwise sequence comparison from
longitudinal dataset, thereby restricting within-pair evolution.
5. Conclusion

This study suggests that fitness landscapes (FL) estimated from
longitudinal data perform well as compared to FLs using cross-sec-
tional data or the expert systems in predicting treatment response.
FL can be modeled from longitudinal data, even when epistatic
interactions are learned from cross sectional data and mainly from
selective pressure with other drugs acting on the same HIV protein.
With this approach we can model FL for drugs with limited se-
quence information such as those used in salvage therapy. There-
fore, estimated fitness and genetic barrier derived from
longitudinal FLs can contribute to an improvement of predicted
treatment outcome. This could be used along with expert systems
such as Rega IS to improve its predictive power.
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