1,323 research outputs found

    Equilibrium gels of limited valence colloids

    Full text link
    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabilities. Limited valence equilibrium gels neither coarsen nor age with time

    Mode-coupling theory predictions for a limited valency attractive square-well model

    Full text link
    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbors. Studying a large region of temperatures TT and packing fractions ϕ\phi, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a {\it (repulsive) glass} line at high packing fraction, and a {\it gel} line at low ϕ\phi and TT. The former is essentially vertical (ϕ\phi-controlled), while the latter is rather horizontal (TT-controlled) in the (ϕ−T)(\phi-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line -- in satisfactory agreement with the simulation results -- and an attractive glass line which appears to be unrelated to the gel line.Comment: 12 pages, 6 figures. To appear in J. Phys. Condens. Matter, special issue: "Topics in Application of Scattering Methods for Investigation of Structure and Dynamics of Soft Condensed Matter", Fiesole, November 200

    Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel

    Full text link
    We report an extensive numerical study of a charged colloidal system with competing short-range depletion attraction and long-range electrostatic repulsion. By analizing the cluster properties, we identify two distinct regions in the phase diagram: a state composed of stable finite-size clusters, whose relative interactions are dominated by long-range repulsion, and a percolating network. Both states are found to dynamically arrest at low temperatures, providing evidence of the existence of two distinct non-ergodic states in these systems: a Wigner glass of clusters and a gel.Comment: 10 figures, to be published in Soft Matte

    One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion

    Full text link
    We report extensive numerical simulations of a simple model for charged colloidal particles in suspension with small non-adsorbing polymers. The chosen effective one-component interaction potential is composed of a short-range attractive part complemented by a Yukawa repulsive tail. We focus on the case where the screening length is comparable to the particle radius. Under these conditions, at low temperature, particles locally cluster into quasi one-dimensional aggregates which, via a branching mechanism, form a macroscopic percolating gel structure. We discuss gel formation and contrast it with the case of longer screening lengths, for which previous studies have shown that arrest is driven by the approach to a Yukawa glass of spherical clusters. We compare our results with recent experimental work on charged colloidal suspensions [A. I. Campbell {\it et al.} cond-mat/0412108, Phys. Rev. Lett. in press].Comment: 14 pages, 25 figure

    Internal structure and swelling behaviour of in silico microgel particles

    Get PDF
    Microgels are soft colloids that, in virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the `in-silico' synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study

    Casimir-like forces at the percolation transition

    Full text link
    Percolation and critical phenomena show common features such as scaling and universality. Colloidal particles, immersed in a solvent close to criticality, experience long-range effective forces, named critical Casimir forces. %These originate from the confinement of the solvent critical fluctuations between the colloids. Building on the analogy between critical phenomena and percolation, we explore the possibility of observing long-range forces near a percolation threshold. To this aim we numerically evaluate the effective potential between two colloidal particles dispersed in a chemical sol and we show that it becomes attractive and long-ranged on approaching the sol percolation transition. We develop a theoretical description based on a polydisperse Asakura-Oosawa model which captures the divergence of the interaction range, allowing us to interpret such effect in terms of depletion interactions in a structured solvent. Our results provide the geometric analogue of the critical Casimir force, suggesting a novel way for tuning colloidal interactions by controlling the clustering properties of the solvent.Comment: final version of the manuscrip

    On the Molecular Origin of the Cooperative Coil-to-globule Transition of Poly(N-isopropylacrylamide) in Water

    Full text link
    By means of atomistic molecular dynamics simulations we investigate the behaviour of poly(N-isopropylacrylamide), PNIPAM, in water at temperatures below and above the lower critical solution temperature (LCST), including the undercooled regime. The transition between water soluble and insoluble states at the LCST is described as a cooperative process involving an intramolecular coil-to-globule transition preceding the aggregation of chains and the polymer precipitation. In this work we investigate the molecular origin of such cooperativity and the evolution of the hydration pattern in the undercooled polymer solution. The solution behaviour of an atactic 30-mer at high dilution is studied in the temperature interval from 243 to 323 K with a favourable comparison to available experimental data. In the PNIPAM water soluble states we detect a correlation between polymer segmental dynamics and diffusion motion of bound water, occurring with the same activation energy. Simulation results show that below the coil-to-globule transition temperature PNIPAM is surrounded by a network of hydrogen bonded water molecules and that the cooperativity arises from the structuring of water clusters in proximity to hydrophobic groups. Differently, the perturbation of the hydrogen bond pattern involving water and amide groups occurs above the transition temperature. Altogether these findings reveal that even above the LCST PNIPAM remains largely hydrated and that the coil-to-globule transition is related with a significant rearrangement of the solvent in proximity of the surface of the polymer. The comparison between the hydrogen bonding of water in the surrounding of PNIPAM isopropyl groups and in bulk displays a decreased structuring of solvent at the hydrophobic polymer-water interface across the transition temperature, as expected because of the topological extension along the chain of such interface

    On the effect of the thermostat in non-equilibrium molecular dynamics simulations

    Full text link
    The numerical investigation of the statics and dynamics of systems in nonequilibrium in general, and under shear flow in particular, has become more and more common. However, not all the numerical methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases. This is especially true for thermostats. Indeed, even though thermostats developed to work under equilibrium conditions sometimes display good agreement with rheology experiments, their performance rapidly degrades beyond weak dissipation and small shear rates. Here we focus on gauging the relative performances of three thermostats, Langevin, dissipative particle dynamics, and Bussi-Donadio-Parrinello under varying parameters and external conditions. We compare their effectiveness by looking at different observables and clearly demonstrate that choosing the right thermostat (and its parameters) requires a careful evaluation of, at least, temperature, density and velocity profiles. We also show that small modifications of the Langevin and DPD thermostats greatly enhance their performance in a wide range of parameters.Comment: 13 pages, 9 figure
    • …
    corecore