1,427 research outputs found
The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z~3
We present the clustering properties of a complete sample of 968 radio
sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter
than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016)
catalogue. Based on their radio-luminosity, these objects have been divided
into two populations of 644 AGN and 247 star-forming galaxies. By fixing the
slope of the auto-correlation function to gamma=2, we find
r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while
r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8}
Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and
star-forming galaxies. These values correspond to minimum masses for dark
matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and
M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies
(M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous
works imply an independence of the clustering properties of the AGN population
with respect to both radio luminosity and redshift. We also investigate the
relationship between dark and luminous matter in both populations. We obtain
/M_halo/M_halo<~10^{-2.4} in the case of
star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming
galaxies, we derive /M_halo<~10^{-2.1}, result which clearly indicates the
cosmic process of stellar build-up as one moves towards the more local
universe. Comparisons between the observed space density of radio-selected AGN
and that of dark matter haloes shows that about one in two haloes is associated
with a black hole in its radio-active phase. This suggests that the
radio-active phase is a recurrent phenomenon.Comment: 11 pages, 7 figures, minor changes to match published version on
MNRA
Photometric redshifts as a tool to study the Coma cluster galaxy populations
We investigate the Coma cluster galaxy luminosity function (GLF) at faint
magnitudes, in particular in the u* band by applying photometric redshift
techniques applied to deep u*, B, V, R, I images covering a region of ~1deg2 (R
24). Global and local GLFs in the B, V, R and I bands obtained with photometric
redshift selection are consistent with our previous results based on a
statistical background subtraction.
In the area covered only by the u* image, the GLF was also derived after
applying a statistical background subtraction. The GLF in the u* band shows an
increase of the faint end slope towards the outer regions of the cluster (from
alpha~1 in the cluster center to alpha~2 in the cluster periphery). This could
be explained assuming a short burst of star formation in these galaxies when
entering the cluster.
The analysis of the multicolor type spatial distribution reveals that late
type galaxies are distributed in clumps in the cluster outskirts, where X-ray
substructures are also detected and where the GLF in the u* band is steeper.Comment: 14 pages, 2 figures in jpeg format, accepted in A&
Evolution of hierarchical clustering in the CFHTLS-Wide since z~1
We present measurements of higher order clustering of galaxies from the
latest release of the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS)
Wide. We construct a volume-limited sample of galaxies that contains more than
one million galaxies in the redshift range 0.2<z<1 distributed over the four
independent fields of the CFHTLS. We use a counts in cells technique to measure
the variance and the hierarchical moments S_n = /^(n-1)
(3<n<5) as a function of redshift and angular scale.The robustness of our
measurements if thoroughly tested, and the field-to-field scatter is in very
good agreement with analytical predictions. At small scales, corresponding to
the highly non-linear regime, we find a suggestion that the hierarchical
moments increase with redshift. At large scales, corresponding to the weakly
non-linear regime, measurements are fully consistent with perturbation theory
predictions for standard LambdaCDM cosmology with a simple linear bias.Comment: 17 pages, 11 figures, submitted to MNRA
Evolution of the Fraction of Clumpy Galaxies at 0.2<z<1.0 in the COSMOS field
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the
COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and
investigated the fraction of clumpy galaxies and its evolution as a function of
stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction
of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases
with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the
stellar mass, although the fraction tends to be slightly lower for massive
galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the
fraction of clumpy galaxies increases with increasing both SFR and SSFR in all
the redshift ranges we investigated. In particular, we found that the SSFR
dependences of the fractions are similar among galaxies with different stellar
masses, and the fraction at a given SSFR does not depend on the stellar mass in
each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9
to z~0.3 seems to be explained by such SSFR dependence of the fraction and the
evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also
appears to decrease with time, but this can be due to the effect of the
morphological K-correction. We suggest that these results are understood by the
gravitational fragmentation model for the formation of giant clumps in disk
galaxies, where the gas mass fraction is a crucial parameter.Comment: 14 Pages, 13 Figures, 1 Table, Accepted for publication in Ap
On the nature of faint Low Surface Brightness galaxies in the Coma cluster
This project is the continuation of our study of faint Low Surface Brightness
Galaxies (fLSBs) in one of the densest nearby galaxy regions known, the Coma
cluster. Our goal is to improve our understanding of the nature of these
objects by comparing the broad band spectral energy distribution with
population synthesis models. The data were obtained with the MEGACAM and CFH12K
cameras at the CFHT. We used the resulting photometry in 5 broad band filters
(u*, B, V, R, and I), that included new u*-band data, to fit spectral models.
With these spectral fits we inferred a cluster membership criterium, as well as
the ages, dust extinctions, and photometric types of these fLSBs. We show that
about half of the Coma cluster fLSBs have a spectral energy distribution well
represented in our template library while the other half present a flux deficit
at ultraviolet wavelengths. Among the well represented, ~80% are probably part
of the Coma cluster based on their spectral energy distribution. They are
relatively young (younger than 2.3 Gyrs for 90% of the sample) non-starburst
objects. The later their type, the younger fLSBs are. A significant part of the
fLSBs are quite dusty objects. fLSBs are low stellar mass objects (the later
their type the less massive they are), with stellar masses comparable to
globular clusters for the faintest ones. Their characteristics are correlated
with infall directions, confirming the disruptive origin for part of them.Comment: Accepted for publication in A&A, 10 pages, 10 figure
A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I Method description
We present a new non-parametric method to quantify morphologies of galaxies
based on a particular family of learning machines called support vector
machines. The method, that can be seen as a generalization of the classical CAS
classification but with an unlimited number of dimensions and non-linear
boundaries between decision regions, is fully automated and thus particularly
well adapted to large cosmological surveys. The source code is available for
download at http://www.lesia.obspm.fr/~huertas/galsvm.html To test the method,
we use a seeing limited near-infrared ( band, ) sample observed
with WIRCam at CFHT at a median redshift of . The machine is trained
with a simulated sample built from a local visually classified sample from the
SDSS chosen in the high-redshift sample's rest-frame (i band, ) and
artificially redshifted to match the observing conditions. We use a
12-dimensional volume, including 5 morphological parameters and other
caracteristics of galaxies such as luminosity and redshift. We show that a
qualitative separation in two main morphological types (late type and early
type) can be obtained with an error lower than 20% up to the completeness limit
of the sample () which is more than 2 times better that what would
be obtained with a classical C/A classification on the same sample and indeed
comparable to space data. The method is optimized to solve a specific problem,
offering an objective and automated estimate of errors that enables a
straightforward comparison with other surveys.Comment: 11 pages, 7 figures, 3 tables. Submitted to A&A. High resolution
images are available on reques
Photometric redshifts for the CFHTLS T0004 Deep and Wide fields
We compute photometric redshifts based on the template-fitting method in the
fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This
unique multi-colour catalogue comprises u*,g',r',i',z' photometry in four deep
fields of 1 deg2 each and 35 deg2 distributed over three Wide fields. Our
photometric redshifts are calibrated with and compared to 16,983 high-quality
spectroscopic redshifts from several surveys. We find a dispersion of 0.028 and
an outlier rate of 3.5% in the Deep field at i'AB < 24 and a dispersion of
0.036 and an outlier rate of 2.8% in the Wide field at i'AB < 22.5. Beyond i'AB
= 22.5 in the Wide field the number of outliers rises from 5% to 10% at i'AB<23
and i'AB<24 respectively. For the Wide sample, we find the systematic redshift
bias keeps below 1% to i'AB < 22.5, whereas we find no significant bias in the
Deep field. We investigated the effect of tile-to-tile photometric variations
and demonstrate that the accuracy of our photometric redshifts is reduced by at
most 21%. We separate stars from galaxies using both the size and colour
information, reducing the contamination by stars in our catalogues from 50% to
8% at i'AB < 22.5 in fields with the highest stellar density while keeping a
complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed
to the community. Our release include 592,891 (i'AB < 22.5) and 244,701 (i'AB <
24) reliable galaxy photometric redshifts in the Wide and Deep fields,
respectively.Comment: 18 pages, 17 figure
The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys
[Abridged] We investigate the global galaxy evolution over 12 Gyr
(0.05<z<4.5), from the star formation rate density (SFRD), combining the VVDS
Deep (17.5<=I<=24.0) and Ultra-Deep (23.00<=i<=24.75) surveys. We obtain a
single homogeneous spectroscopic redshift sample, totalizing about 11000
galaxies. We estimate the rest-frame FUV luminosity function (LF) and
luminosity density (LD), extract the dust attenuation of the FUV radiation
using SED fitting, and derive the dust-corrected SFRD. We find a constant and
flat faint-end slope alpha in the FUV LF at z1.7, we set alpha
steepening with (1+z). The absolute magnitude M*_FUV brightens in the entire
range 02 it is on average brighter than in the literature,
while phi* is smaller. Our total LD shows a peak at z=2, present also when
considering all sources of uncertainty. The SFRD history peaks as well at z=2.
It rises by a factor of 6 during 2 Gyr (from z=4.5 to z=2), and then decreases
by a factor of 12 during 10 Gyr down to z=0.05. This peak is mainly produced by
a similar peak within the population of galaxies with -21.5<=M_FUV<=-19.5 mag.
As times goes by, the total SFRD is dominated by fainter and fainter galaxies.
The presence of a clear peak at z=2 and a fast rise at z>2 of the SFRD is
compelling for models of galaxy formation. The mean dust attenuation A_FUV of
the global galaxy population rises by 1 mag during 2 Gyr from z=4.5 to z=2,
reaches its maximum at z=1 (A_FUV=2.2 mag), and then decreases by 1.1 mag
during 7 Gyr down to z=0. The dust attenuation maximum is reached 2 Gyr after
the SFRD peak, implying a contribution from the intermediate-mass stars to the
dust production at z<2.Comment: 23 pages, 15 figures, accepted for publication in A&
Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics
We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS
survey to study systematic effects in extracting properties of stellar
populations (age, dust, metallicity and SFR) from pixel colors using the
pixel-z method. The systematics studied include the effect of the input stellar
population synthesis model, passband limitations and differences between
individual SED fits to pixels and global SED-fitting to a galaxy's colors. We
find that with optical-only colors, the systematic errors due to differences
among the models are well constrained. The largest impact on the age and SFR
e-folding time estimates in the pixels arises from differences between the
Maraston models and the Bruzual&Charlot models, when optical colors are used.
This results in systematic differences larger than the 2{\sigma} uncertainties
in over 10 percent of all pixels in the galaxy sample. The effect of
restricting the available passbands is more severe. In 26 percent of pixels in
the full sample, passband limitations result in systematic biases in the age
estimates which are larger than the 2{\sigma} uncertainties. Systematic effects
from model differences are reexamined using Near-IR colors for a subsample of
46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR
colors span the rest frame UV-optical SED, and the use of different models does
not significantly bias the estimates of the stellar population parameters
compared to using optical-only colors. We then illustrate how pixel-z can be
applied robustly to make detailed studies of substructure in high redshift
galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the
distribution of these properties within subcomponents such as spiral arms and
clumps. Finally, we show preliminary results from the CANDELS survey
illustrating how the new HST/WFC3 data can be exploited to probe substructure
in z~1-3 galaxies.Comment: 37 pages, 21 figures, submitted to Ap
Spitzer bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z=3-7
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with
[4.5]24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our
aim is to investigate whether these mid-IR bright, near-IR faint sources
contribute significantly to the overall population of massive galaxies at
redshifts z>=3. By performing a spectral energy distribution (SED) analysis
using up to 30 photometric bands, we have determined that the redshift
distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the
galaxies lie at z>=3. We have studied the contribution of these sources to the
galaxy stellar mass function (GSMF) at high redshifts. We found that the
[4.5]24 galaxies produce a negligible change to the GSMF
previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution
is more important at 4=~50% of the galaxies with stellar
masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass
end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual
absence at higher redshifts, we can pinpoint quite precisely the moment of
appearance of the first most massive galaxies as taking place in the ~0.2 Gyr
of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies
existed earlier in cosmic time, they should have been significantly
dust-obscured to lie beyond the detection limits of current, large-area, deep
near-IR surveys.Comment: 18 pages, 15 figures, 4 tables. Updated to match version in press at
the Ap
- âŠ