research

A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I Method description

Abstract

We present a new non-parametric method to quantify morphologies of galaxies based on a particular family of learning machines called support vector machines. The method, that can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions, is fully automated and thus particularly well adapted to large cosmological surveys. The source code is available for download at http://www.lesia.obspm.fr/~huertas/galsvm.html To test the method, we use a seeing limited near-infrared (KsK_s band, 2,16μm2,16\mu m) sample observed with WIRCam at CFHT at a median redshift of z0.8z\sim0.8. The machine is trained with a simulated sample built from a local visually classified sample from the SDSS chosen in the high-redshift sample's rest-frame (i band, 0.77μm0.77\mu m) and artificially redshifted to match the observing conditions. We use a 12-dimensional volume, including 5 morphological parameters and other caracteristics of galaxies such as luminosity and redshift. We show that a qualitative separation in two main morphological types (late type and early type) can be obtained with an error lower than 20% up to the completeness limit of the sample (KAB22KAB\sim 22) which is more than 2 times better that what would be obtained with a classical C/A classification on the same sample and indeed comparable to space data. The method is optimized to solve a specific problem, offering an objective and automated estimate of errors that enables a straightforward comparison with other surveys.Comment: 11 pages, 7 figures, 3 tables. Submitted to A&A. High resolution images are available on reques

    Similar works