12 research outputs found

    Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production

    No full text
    Activin-A is a transforming growth factor-β (TGF-β) superfamily member that plays a pivotal role in many developmental and reproductive processes. It is also involved in neuroprotection, apoptosis of tumor and some immune cells, wound healing, and cancer. Its role as an immune-regulating protein has not previously been described. Here we demonstrate for the first time that activin-A has potent autocrine effects on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human monocyte-derived DCs (MoDCs) and the CD1c+ and CD123+ peripheral blood DC populations express both activin-A and the type I and II activin receptors. Furthermore, MoDCs and CD1c+ myeloid DCs rapidly secrete high levels of activin-A after exposure to bacteria, specific toll-like receptor (TLR) ligands, or CD40 ligand (CD40L). Blocking autocrine activin-A signaling in DCs using its antagonist, follistatin, enhanced DC cytokine (IL-6, IL-10, IL-12p70, and tumor necrosis factor-α [TNF-α]) and chemokine (IL-8, IP-10, RANTES, and MCP-1) production during CD40L stimulation, but not TLR-4 ligation. Moreover, antagonizing DC-derived activin-A resulted in significantly enhanced expansion of viral antigen-specific effector CD8+ T cells. These findings establish an immune-regulatory role for activin-A in DCs, highlighting the potential of antagonizing activin-A signaling in vivo to enhance vaccine immunogenicity
    corecore