30 research outputs found

    Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation

    Get PDF
    BACKGROUND: The microRNAs (miRNAs) are an extensive class of small noncoding RNAs (18 to 25 nucleotides) with probable roles in the regulation of gene expression. In Caenorhabditis elegans, lin-4 and let-7 miRNAs control the timing of fate specification of neuronal and hypodermal cells during larval development. lin-4, let-7 and other miRNA genes are conserved in mammals, and their potential functions in mammalian development are under active study. RESULTS: In order to identify mammalian miRNAs that might function in development, we characterized the expression of 119 previously reported miRNAs in adult organs from mouse and human using northern blot analysis. Of these, 30 miRNAs were specifically expressed or greatly enriched in a particular organ (brain, lung, liver or skeletal muscle). This suggests organ- or tissue-specific functions for miRNAs. To test if any of the 66 brain-expressed miRNAs were present in neurons, embryonal carcinoma cells were treated with all-trans-retinoic acid to promote neuronal differentiation. A total of 19 brain-expressed miRNAs (including lin-4 and let-7 orthologs) were coordinately upregulated in both human and mouse embryonal carcinoma cells during neuronal differentiation. The mammalian ortholog of C. elegans lin-28, which is downregulated by lin-4 in worms via 3' untranslated region binding, was also repressed during neuronal differentiation of mammalian embryonal carcinoma cells. Mammalian lin-28 messenger RNAs contain conserved predicted binding sites in their 3' untranslated regions for neuron-expressed miR-125b (a lin-4 ortholog), let-7a, and miR-218. CONCLUSIONS: The identification of a subset of brain-expressed miRNAs whose expression behavior is conserved in both mouse and human differentiating neurons implicates these miRNAs in mammalian neuronal development or function

    Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium

    Get PDF
    BACKGROUND: The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. RESULTS: Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints. CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators

    Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2)

    Get PDF
    Objective- To evaluate the intraocular pressure (IOP)-lowering efficacy and safety of 10 and 15 µg bimatoprost implant in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT). Methods- This randomized, 20-month, multicenter, masked, parallel-group, phase 3 trial enrolled 528 patients with OAG or OHT and an open iridocorneal angle inferiorly in the study eye. Study eyes were administered 10 or 15 µg bimatoprost implant on day 1, week 16, and week 32, or twice-daily topical timolol maleate 0.5%. Primary endpoints were IOP and IOP change from baseline through week 12. Safety measures included treatment-emergent adverse events (TEAEs) and corneal endothelial cell density (CECD). Results- Both 10 and 15 µg bimatoprost implant met the primary endpoint of noninferiority to timolol in IOP lowering through 12 weeks. Mean IOP reductions from baseline ranged from 6.2–7.4, 6.5–7.8, and 6.1–6.7 mmHg through week 12 in the 10 µg implant, 15 µg implant, and timolol groups, respectively. IOP lowering was similar after the second and third implant administrations. Probabilities of requiring no IOP-lowering treatment for 1 year after the third administration were 77.5% (10 µg implant) and 79.0% (15 µg implant). The most common TEAE was conjunctival hyperemia, typically temporally associated with the administration procedure. Corneal TEAEs of interest (primarily corneal endothelial cell loss, corneal edema, and corneal touch) were more frequent with the 15 than the 10 µg implant and generally were reported after repeated administrations. Loss in mean CECD from baseline to month 20 was ~ 5% in 10 µg implant-treated eyes and ~ 1% in topical timolol-treated eyes. Visual field progression (change in the mean deviation from baseline) was reduced in the 10 µg implant group compared with the timolol group. Conclusions- The results corroborated the previous phase 3 study of the bimatoprost implant. The bimatoprost implant met the primary endpoint and effectively lowered IOP. The majority of patients required no additional treatment for 12 months after the third administration. The benefit-risk assessment favored the 10 over the 15 µg implant. Studies evaluating other administration regimens with reduced risk of corneal events are ongoing. The bimatoprost implant has the potential to improve adherence and reduce treatment burden in glaucoma

    Subconjunctival Delivery of Dorzolamide-Loaded Poly(ether-anhydride) Microparticles Produces Sustained Lowering of Intraocular Pressure in Rabbits

    No full text
    Topical medications that inhibit the enzyme carbonic anhydrase (CAI) are widely used to lower intraocular pressure in glaucoma; however, their clinical efficacy is limited by the requirement for multiple-daily dosing, as well as side effects such as blurred vision and discomfort on drop instillation. We developed a biodegradable polymer microparticle formulation of the CAI dorzolamide that produces sustained lowering of intraocular pressure after subconjunctival injection. Dorzolamide was ion paired with sodium dodecyl sulfate (SDS) and sodium oleate (SO) with 0.8% and 1.5% drug loading in poly­(lactic-<i>co</i>-glycolic acid) (PLGA), respectively. Encapsulating dorzolamide into poly­(ethylene glycol)-<i>co</i>-poly­(sebacic acid) (PEG<sub>3</sub>-PSA) microparticles in the presence of triethylamine (TEA) resulted in 14.9% drug loading and drug release that occurred over 12 days <i>in vitro</i>. Subconjunctival injection of dorzolamide-PEG<sub>3</sub>-PSA microparticles (DPP) in Dutch belted rabbits reduced IOP as much as 4.0 ± 1.5 mmHg compared to untreated fellow eyes for 35 days. IOP reduction after injection of DPP microparticles was significant when compared to baseline untreated IOPs (<i>P</i> < 0.001); however, injection of blank microparticles (PEG<sub>3</sub>-PSA) did not affect IOP (<i>P</i> = 0.9). Microparticle injection was associated with transient clinical vascularity and inflammatory cell infiltration in conjunctiva on histological examination. Fluorescently labeled PEG<sub>3</sub>-PSA microparticles were detected for at least 42 days after injection, indicating that <i>in vivo</i> particle degradation is several-fold longer than <i>in vitro</i> degradation. Subconjunctival DPP microparticle delivery is a promising new platform for sustained intraocular pressure lowering in glaucoma

    UBE1L is a retinoid target that triggers PML/RARα degradation and apoptosis in acute promyelocytic leukemia

    Get PDF
    All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor α (RARα). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARα, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of retinoid response in APL is the proteasome-dependent PML/RARα degradation. UBE1L transfection triggered PML/RARα degradation, but transfection of a truncated UBE1L or E1 did not cause this degradation. A tight link was shown between UBE1L induction and PML/RARα degradation. Notably, retroviral expression of UBE1L rapidly induced apoptosis in NB4 APL cells, but not in cells lacking PML/RARα expression. UBE1L has been implicated directly in retinoid effects in APL and may be targeted for repression by PML/RARα. UBE1L is proposed as a direct pharmacological target that overcomes oncogenic effects of PML/RARα by triggering its degradation and signaling apoptosis in APL cells
    corecore