65 research outputs found

    Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids

    Get PDF
    Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNAmethylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele.We show that Pol IV-dependent sRNAs are required to establish TCM events. The changes in DNA methylation and the associated changes in sRNA levels in the F1 hybrid can be maintained in subsequent generations and affect hundreds of regions in the F2 epigenome. The inheritance of these altered epigenetic states varies in F2 individuals, resulting in individuals with genetically identical loci displaying different epigenetic states and gene expression profiles. The change in methylation at these regions is associated with the presence of sRNAs. Lociwithout any sRNA activity can have alteredmethylation states, suggesting that a sRNA-independent mechanism may also contribute to the altered methylation state of the F1 and F2 generations

    Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids

    Get PDF
    Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents

    Li Partitioning Into Coccoliths of Emiliania huxleyi : Evaluating the General Role of “Vital Effects” in Explaining Element Partitioning in Biogenic Carbonates

    Get PDF
    Emiliania huxleyi cells were grown in artificial seawater of different Li and Ca concentrations and coccolith Li/Ca ratios determined. Coccolith Li/Ca ratios were positively correlated to seawater Li/Ca ratios only if the seawater Li concentration was changed, not if the seawater Ca concentration was changed. This Li partitioning pattern of E. huxleyi was previously also observed in the benthic foraminifer Amphistegina lessonii and inorganically precipitated calcite. We argue that Li partitioning in both E. huxleyi and A. lessonii is dominated by a coupled transmembrane transport of Li and Ca from seawater to the site of calcification. We present a refined version of a recently proposed transmembrane transport model for Li and Ca. The model assumes that Li and Ca enter the cell via Ca channels, the Li flux being dependent on the Ca flux. While the original model features a linear function to describe the experimental data, our refined version uses a power function, changing the stoichiometry of Li and Ca. The version presented here accurately predicts the observed dependence of DLi on seawater Li/Ca ratios. Our data demonstrate that minor element partitioning in calcifying organisms is partly mediated by biological processes even if the partitioning behavior of the calcifying organism is indistinguishable from that of inorganically precipitated calcium carbonate

    Development of a peer support intervention to encourage dietary behaviour change towards a Mediterranean diet in adults at high cardiovascular risk.

    Get PDF
    BACKGROUND: Mediterranean diet (MD) interventions are demonstrated to significantly reduce cardiovascular disease (CVD) risk but are typically resource intensive and delivered by health professionals. There is considerable interest to develop interventions that target sustained dietary behaviour change and that are feasible to scale-up for wider public health benefit. The aim of this paper is to describe the process used to develop a peer support intervention to encourage dietary behaviour change towards a MD in non-Mediterranean adults at high CVD risk. METHODS: The Medical Research Council (MRC) and Behaviour Change Wheel (BCW) frameworks and the COM-B (Capability, Opportunity, Motivation, Behaviour) theoretical model were used to guide the intervention development process. We used a combination of evidence synthesis and qualitative research with the target population, health professionals, and community health personnel to develop the intervention over three main stages: (1) we identified the evidence base and selected dietary behaviours that needed to change, (2) we developed a theoretical basis for how the intervention might encourage behaviour change towards a MD and selected intervention functions that could drive the desired MD behaviour change, and (3) we defined the intervention content and modelled outcomes. RESULTS: A theory-based, culturally tailored, peer support intervention was developed to specifically target behaviour change towards a MD in the target population. The intervention was a group-based program delivered by trained peer volunteers over 12-months, and incorporated strategies to enhance social support, self-efficacy, problem-solving, knowledge, and attitudes to address identified barriers to adopting a MD from the COM-B analysis. CONCLUSIONS: The MRC and BCW frameworks provided a systematic and complementary process for development of a theory-based peer support intervention to encourage dietary behaviour change towards a MD in non-Mediterranean adults at high CVD risk. The next step is to evaluate feasibility, acceptability, and diet behaviour change outcomes in response to the peer support intervention (change towards a MD and nutrient biomarkers) using a randomized controlled trial design

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance

    No full text
    We used chromosome painting to show directly that chromosomes occupy fixed positions in the nuclei of mammal but not chicken sperm. We found that the positions of homologous chromosomes are conserved in sperm of two marsupial species that diverged 50-60 million years ago. We also discovered that the X chromosome lies in the region that makes first contact with the egg in marsupial and monotreme mammals, as well as eutherians, and suggest that this position may be related to its propensity for inactivation, and its high rate of loss from ICSI embryos. We propose that nuclear architecture in sperm is important for spatial chromatin differentiation and normal development of the fertilized egg, and evolved along with mammal-specific regulatory systems such as X inactivation and genomic imprinting

    The X and Y Chromosomes Assemble into H2A.Z-Containing Facultative Heterochromatin following Meiosis

    No full text
    Spermatogenesis is a complex sequential process that converts mitotically dividing spermatogonia stem cells into differentiated haploid spermatozoa. Not surprisingly, this process involves dramatic nuclear and chromatin restructuring events, but the nature of these changes are poorly understood. Here, we linked the appearance and nuclear localization of the essential histone variant H2A.Z with key steps during mouse spermatogenesis. H2A.Z cannot be detected during the early stages of spermatogenesis, when the bulk of X-linked genes are transcribed, but its expression begins to increase at pachytene, when meiotic sex chromosome inactivation (MSCI) occurs, peaking at the round spermatid stage. Strikingly, when H2A.Z is present, there is a dynamic nuclear relocalization of heterochromatic marks (HP1β and H3 di- and tri-methyl K9), which become concentrated at chromocenters and the inactive XY body, implying that H2A.Z may substitute for the function of these marks in euchromatin. We also show that the X and the Y chromosome are assembled into facultative heterochromatic structures postmeiotically that are enriched with H2A.Z, thereby replacing macroH2A. This indicates that XY silencing continues following MSCI. These results provide new insights into the large-scale changes in the composition and organization of chromatin associated with spermatogenesis and argue that H2A.Z has a unique role in maintaining sex chromosomes in a repressed state
    corecore