46 research outputs found
X-ray translucent reaction cell for simulation of carbon mineral storage reservoir environments
Understanding how in-situ mineralization of CO2 affects the porosity, permeability, and pore network of the host rock is critical to assessing the viability of basalt reservoirs as carbon dioxide repositories. Here, we present an x-ray translucent environmental cell which allows carbon mineralization, and other fluidârock reactions to be studied in real time and on the grain scale under simulated geological reservoir conditions using microtomographic imaging. The cell operates autonomously from a CT instrument and is periodically quenched and relocated for scanning, enabling long duration operando experiments. Samples are reacted under controlled conditions of chemistry, temperature, and fluid pressure. Porosity and permeability changes are tracked through digital image analysis of successive CT scans. Samples are fully recoverable, allowing for a suite of post-mortem analyses. The cell design uses readily available materials, can sustain long-term operating temperatures of up to 200 °C, and is reproducible at low cost with a centre lathe and a mill using a conveniently equipped mechanical workshop
Simulation of Bench-Scale CO2 Injection Using a Coupled Continuum-Discrete Approach
Unintended releases of CO2 from carbon capture and storage operations presents the risk of atmospheric emissions and groundwater or surface water quality impacts. Given the potential impacts, it is valuable to have tools capable of predicting groundwater concentrations and likely pathways of CO2 migration in the subsurface. Traditional multiphase flow models struggle to simulate the discontinuous flow expected at leakage sites. This work applied a coupled continuum-discrete model, ET-MIP, to simulate a bench-scale injection of CO2. Results demonstrate the capability of ET-MIP to accurately capture gas fingering behaviour, and the complexity of multicomponent mass transfer observed in the experiment. Simulations were computationally efficient, allowing for the use of multiple displacement pressure realizations. CO2 migration in the subsurface was shown to be sensitive to mass transfer, as i) increased groundwater velocity can dissolve leaked CO2 prior to reaching the surface and ii) background dissolved gases in the subsurface can impact the rate of upwards gas movement, gas distribution, and the composition and persistence of the gas phase. The sensitivity to mass transfer suggests it may be preferable to monitor for low-solubility gases in the source mixture rather than CO2. These findings are applicable to other gases in the subsurface, such as hydrogen or methane migrating from geoenergy wells
The Physical Characteristics of a CO2 Seeping Fault: the implications of fracture permeability for carbon capture and storage integrity
To ensure the effective long-term storage of CO2 in candidate geological storage sites, evaluation of potential leakage pathways to the surface should be undertaken. Here we use a series of natural CO2 seeps along a fault in South Africa to assess the controls on CO2 leakage to the surface. Geological mapping and detailed photogrammetry reveals extensive fracturing along the mapped fault trace. Measurements of gas flux and CO2 concentration across the fracture corridor give maximum soil gas measurements of 27% CO2 concentration and a flux of 191 g mâ2 dâ1. These measurements along with observations of gas bubbles in streams and travertine cones attest to CO2 migration to the surface. Permeability measurements on the host rock units show that the tillite should act as an impermeable seal to upward CO2 migration. The combined permeability and fracture mapping data indicate that fracture permeability creates the likely pathway for CO2 migration through the low permeability tillite to the surface. Heterogeneity in fracture connectivity and intensity at a range of scales will create local higher permeability pathways along the fracture corridor, although these may seal with time due to fluid-rock interaction. The results have implications for the assessment and choice of geological CO2 storage sites, particularly in the assessment of sub-seismic fracture networks
CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions
Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells
Global carbon budget 2019
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere â the âglobal carbon budgetâ â is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1Ï. For the last decade available (2009â2018), EFF was 9.5±0.5âGtCâyrâ1, ELUC 1.5±0.7âGtCâyrâ1, GATM 4.9±0.02âGtCâyrâ1 (2.3±0.01âppmâyrâ1), SOCEAN 2.5±0.6âGtCâyrâ1, and SLAND 3.2±0.6âGtCâyrâ1, with a budget imbalance BIM of 0.4âGtCâyrâ1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1â% and fossil emissions increased to 10.0±0.5âGtCâyrâ1, reaching 10âGtCâyrâ1 for the first time in history, ELUC was 1.5±0.7âGtCâyrâ1, for total anthropogenic CO2 emissions of 11.5±0.9âGtCâyrâ1 (42.5±3.3âGtCO2). Also for 2018, GATM was 5.1±0.2âGtCâyrâ1 (2.4±0.1âppmâyrâ1), SOCEAN was 2.6±0.6âGtCâyrâ1, and SLAND was 3.5±0.7âGtCâyrâ1, with a BIM of 0.3âGtC. The global atmospheric CO2 concentration reached 407.38±0.1âppm averaged over 2018. For 2019, preliminary data for the first 6â10 months indicate a reduced growth in EFF of +0.6â% (range of â0.2â% to 1.5â%) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959â2018, but discrepancies of up to 1âGtCâyrâ1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)
First, do no harm: managing the metabolic impacts of androgen deprivation in men with advanced prostate cancer
Androgen deprivation therapy (ADT) is a standard systemic treatment for men with prostate cancer. Men on ADT may be elderly and have comorbidities that are exacerbated by ADT, such as cardiovascular disease, diabetes, obesity, sedentary lifestyle and osteoporosis. Studies on managing the impacts of ADT have focused on men with non-metastatic disease, where ADT is given for a limited duration. However, some men with advanced or metastatic prostate cancer will achieve long-term survival with palliative ADT and therefore also risk morbidity from prolonged ADT. Furthermore, ADT is continued during the use of other survival-prolonging therapies for men with advanced disease, and there is a general trend to use ADT earlier in the disease course. As survival improves, management of the metabolic effects of ADT becomes important for maintaining both quality and quantity of life. This review will outline the current data, offer perspectives for management of ADT complications in men with advanced prostate cancer and discuss avenues for further research
A Truncated Splice-Variant of the FcΔRIÎČ Receptor Subunit Is Critical for Microtubule Formation and Degranulation in Mast Cells
SummaryHuman linkage analyses have implicated the MS4A2-containing gene locus (encoding FcΔRIÎČ) as a candidate for allergy susceptibility. We have identified a truncation of FcΔRIÎČ (t-FcΔRIÎČ) in humans that contains a putative calmodulin-binding domain and thus, we sought to identify the role of this variant in mast cell function. We determined that t-FcΔRIÎČ is critical for microtubule formation and degranulation and that it may perform this function by trafficking adaptor molecules and kinases to the pericentrosomal and Golgi region in response to Ca2+ signals. Mutagenesis studies suggest that calmodulin binding to t-FcΔRIÎČ in the presence of Ca2+ could be critical for t-FcΔRIÎČ function. In addition, gene targeting of t-FcΔRIÎČ attenuated microtubule formation, degranulation, and IL-8 production downstream of Ca2+ signals. Therefore, t-FcΔRIÎČ mediates Ca2+-dependent microtubule formation, which promotes degranulation and cytokine release. Because t-FcΔRIÎČ has this critical function, it represents a therapeutic target for the downregulation of allergic inflammation