60 research outputs found
Response to Merritts et al. (2023): The Anthropocene is complex. Defining it is not
Merritts et al. (2023) misrepresent Paul Crutzen's Anthropocene concept as encompassing all significant anthropogenic impacts, extending back many millennia. Crutzen's definition reflects massively enhanced, much more recent human impacts that transformed the Earth System away from the stability of Holocene conditions. His concept of an epoch (hence the âceneâ suffix) is more consistent with the strikingly distinct sedimentary record accumulated since the mid-20th century. Waters et al. (2022) highlighted a Great Acceleration Event Array (GAEA) of stratigraphic event markers that are indeed diverse and complex but also tightly clustered around 1950 CE, allowing ultra-high resolution characterization and correlation of a clearly recognisable Anthropocene chronostratigraphic base. The âAnthropocene eventâ offered by Merritts et al., following Gibbard et al. (2021, 2022), is a highly nuanced concept that obfuscates the transformative human impact of the chronostratigraphic Anthropocene. Waters et al. (2022) restricted the meaning of the term âeventâ in geology to conform with usual Quaternary practice and improve its utility. They simultaneously recognized an evidence-based Anthropogenic Modification Episode that is more explicitly defined than the highly interpretive interdisciplinary âAnthropocene eventâ of Gibbard et al. (2021, 2022). The advance of science is best served through clearly developed concepts supported by tightly circumscribed terminology; indeed, improvements to stratigraphy over recent decades have been achieved through increasingly precise definitions, especially for chronostratigraphic units, and not by retaining vague terminology
The Anthropocene is a prospective epoch/series, not a geological event
The Anthropocene defined as an epoch/series within the Geological Time Scale, and with an isochronous inception in the mid-20th century, would both utilize the rich array of stratigraphic signals associated with the Great Acceleration and align with Earth System science analysis from where the term Anthropocene originated. It would be stratigraphically robust and reflect the reality that our planet has far exceeded the range of natural variability for the Holocene Epoch/Series which it would terminate. An alternative, recently advanced, time-transgressive âgeological eventâ definition would decouple the Anthropocene from its stratigraphic characterisation and association with a major planetary perturbation. We find this proposed anthropogenic âeventâ to be primarily an interdisciplinary concept in which historical, cultural and social processes and their global environmental impacts are all flexibly interpreted within a multi-scalar framework. It is very different from a stratigraphic-methods-based Anthropocene epoch/series designation, but as an anthropogenic phenomenon, if separately defined and differently named, might be usefully complementary to it
Plastic microfibre ingestion by deep-sea organisms
Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics
Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates
International audienc
Editorial: Microplastics in the Marine Environment: Sources, Distribution, Biological Effects and Socio-Economic Impacts
From all the synthetic materials ever produced, plastic is the most versatile, overthrowing both glass and metal in many applications, due to its low weight and cost. Global plastic production started shortly after WWII, around the 1950âs (PlasticsEurope, 2010), and became a popular household item around the same time (Time, 1955). Since then, global production has been exponentially increasing at a rate of 8% per annum (PlasticsEurope, 2020). Notably, it took only 10 (1965) to 17 (1972) years until researchers started noticing the first evidence of plastics in the marine environment (Carpenter and Smith, 1972; Ryan, 2015). Between the 1960âs and the 1990âs, several studies reported direct consequences of plastic interaction with vessels, particularly entanglement of propellers, and with wildlife, via entanglement or ingestion (Ryan, 2015). Consistent findings throughout the world led to calls for action, due to the likelihood that over time the problem would be amplified by fragmentation of larger plastic items into smaller pieces (Carpenter and Smith, 1972). Microplastic research is now a well established research field, with at least 2,500 papers published so far on this topic (Zhang et al., 2020). Despite being a relatively recent research field, microplastic pollution has gone beyond the realm of academia into the general public. Several stakeholders with different vested interests are involved in this topic, from standardization bodies to grassroot movements, from national agencies to research institutions. Plastic has become a social issue, due to its economic and environmental consequences, which affect human activities and the natural cycles of the planet. In order to contribute to the debate, this Research Topic (RT) highlights recent research developments in the microplastic field, in a diverse set of topics that cover relevant aspects from methodologies to modeling, and from impacts on fauna to legislation. A total of 23 research papers from 43 primary and partner institutions, in four continents and spread across 15 countries (Figure 1A), reveal the prevalence of this global problem, and report on some of the solutions ahead
Global research priorities to mitigate plastic pollution impacts on marine wildlife
Marine wildlife faces a growing number of threats across the globe, and the survival of many species and populations will be dependent on conservation action. One threat in particular that has emerged over the last 4 decades is the pollution of oceanic and coastal habitats with plastic debris. The increased occurrence of plastics in marine ecosystems mirrors the increased prevalence of plastics in society, and reflects the high durability and persistence of plastics in the environment. In an effort to guide future research and assist mitigation approaches to marine conservation, we have generated a list of 16 priority research questions based on the expert opinions of 26 researchers from around the world, whose research expertise spans several disciplines, and covers each of the worldâs oceans and the taxa most at risk from plastic pollution. This paper highlights a growing concern related to threats posed to marine wildlife from microplastics and fragmented debris, the need for data at scales relevant to management, and the urgent need to develop interdisciplinary research and management partnerships to limit the release of plastics into the environment and curb the future impacts of plastic pollution
- âŠ