275 research outputs found

    Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide

    Get PDF
    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines

    Body Mass Index (BMI) assessment among Macau students: age group differences and weight management strategies

    Get PDF
    There is evidence that rapid weight gain during the first year of life is associated with being overweight later in life. Therefore, overweight tendencies need to be detected at an appropriate age, and suitable strategies need to be implemented for weight management to achieve optimal long-term health. The objective of this study was to investigate comparisons in BMI status and associated categories in male and female students over ten years in two phases, including 2008-2013 and 2009-2014. Weight and height data were collected to obtain BMI (Body Mass Index) over ten years in two phases. The first phase occurred from 2008 to 2013, and the second phase occurred from 2009 to 2014 in a population of 10846 school children (Males: 6970, 64.3%, and females: 3875, 35.7%) in Macau. Their ages ranged from 6 years old in 2008 to 11 years old in 2013. The same age range was observed in the second phase, i.e., 2009-2014. Statistical analyses included descriptive statistics, such as the mean, standard deviation, t-tests to determine gender differences (year-wise) and a Chi square test for independence to determine the relationship between BMI (Underweight, Standard, Overweight and Obese) and age groups. In the first phase (2008-2013), the findings indicated a higher BMI level among the male students than the female students across all age groups (2008 t = 5.24, 2009 t = 88.25, 2010 t = 11.32, 2011 t = 17.45, 2012 t = 19.70 and 2013 t = 19.92). In the second phase (2009-2014), a higher BMI level was found among the male students than the female students across all age groups (2009 t = 2.68, 2010 t = 2.886, 2011 t = 3.076, 2013 t = 4.228, and 2014 t = 2.405). The results of the two phases combined (2008 to 2014 and 2009 to 2014) revealed that male students in 2008 had a higher BMI level than their counterparts in 2009 in the two age categories (8 years t = 3.025 and 11 years t = 3.377). Female students in the second phase (2009-2014) showed a higher BMI level than their male counterparts (9 years, t = 3.151). The results indicate the need to have focused strategies and structured interventions for male students at the critical age range of 8 to 9 years old. The results of this study also imply the need for the delivery of suitable school intervention activities at the appropriate time. Specifically, the prevention of weight gain should start early in life to encourage the development of healthier behaviours and habits throughout childhood and later ages

    GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is characterized by airway hyperresponsiveness (AHR) and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg) cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR) is known to have a co-stimulatory function on effector CD4<sup>+ </sup>T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma.</p> <p>Methods</p> <p>CD4<sup>+</sup>CD25<sup>- </sup>cells were polarized <it>in vitro </it>into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies.</p> <p>Results</p> <p>GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells <it>in vitro</it>. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and <it>ex vivo </it>Th2 cytokine release, but did not increase BAL eosinophilia.</p> <p>Conclusion</p> <p>GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells <it>in vitro</it>, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed <it>in vivo </it>in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine production by polarized primary Th1 and Th2 populations and the relevance of this pathway for AHR in mouse models for asthma. Our data provides crucial information on the mode of action of the GITR signaling, a pathway which is currently being considered for therapeutic intervention.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Effects of Different Up-Dosing Regimens for Hymenoptera Venom Immunotherapy on Serum CTLA-4 and IL-10

    Get PDF
    BACKGROUND: Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is involved in the activation pathways of T lymphocytes. It has been shown that the circulating form of CTLA-4 is elevated in patients with hymenoptera allergy and can be down regulated by immunotherapy. OBJECTIVE: to assess the effects on CTLA-4 of venom immunotherapy, given with different induction protocols: conventional (6 weeks), rush (3 days) or ultra rush (1 day). METHODS: Sera from patients with hymenoptera allergy were collected at baseline and at the end of the induction phase. CTLA-4 and IL-10 were assayed in the same samples. A subset of patients were assayed also after 12 months of VIT maintenance. RESULTS: Ninety-four patients were studied. Of them, 50 underwent the conventional induction, 20 the rush and 24 the ultra-rush. Soluble CTLA-4 was detectable in all patients at baseline, and significantly decreased at the end of the induction, irrespective of its duration. Of note, a significant decrease of sCTLA-4 could be seen already at 24 hours. In parallel, IL-10 significantly increased at the end of the induction. At 12 months, sCTLA-4 remained low, whereas IL-10 returned to the baseline values. CONCLUSIONS: Serum CTLA4 is an early marker of the immunological effects of venom immunotherapy, and its changes persist after one year of maintenance treatment

    A retrospective observational study on the efficacy of colistin by inhalation as compared to parenteral administration for the treatment of nosocomial pneumonia associated with multidrug-resistant Pseudomonas aeruginosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colistin is used as last treatment option for pneumonia associated with multidrug-resistant (MDR) <it>Pseudomonas </it>spp.. Literature about the best administration mode (inhalation versus parenteral treatment) is lacking.</p> <p>Methods</p> <p>A retrospective study of 20 intensive care patients with a pneumonia associated with MDR <it>P. aeruginosa </it>receiving colistin sulphomethate sodium (Colistineb<sup>®</sup>) between 2007 and 2009 was performed. A strain was considered multidrug-resistant if it was resistant to at least 6 of the following antibiotics: piperacillin-tazobactam, ceftazidime, cefepime, meropenem, aztreonam, ciprofloxacin, and amikacin. The administration mode, predicted mortality based on the SAPS3 score, SOFA score at onset of the colistin treatment, clinical and microbiological response, and mortality during the episode of the infection were analysed. The non parametric Kruskal-Wallis and Fisher's Exact test were used for statistical analysis of respectively the predicted mortality/SOFA score and mortality rate.</p> <p>Results</p> <p>Six patients received colistin by inhalation only, 5 were treated only parenterally, and 9 by a combination of both administration modes. All patients received concomitant beta-lactam therapy. The mean predicted mortalities were respectively 72%, 68%, and 69% (p = 0.91). SOFA scores at the onset of the treatment were also comparable (p = 0.87). Clinical response was favorable in all patients receiving colistin by inhalation (6/6) and in 40% (2/5) of the patients receiving colistin parenterally (p = 0.06). In the patients with colistin administered both via inhalation and parenterally, clinical response was favorable in 78% of the patients (7/9) (p = 0.27 as compared to the treatment group receiving colistin only parenterally). When all patients with inhalation therapy were compared to the group without inhalation therapy, a favorable clinical response was present in respectively 87% and 40% (p = 0.06). In none of the patients, the <it>Pseudomonas </it>spp. was eradicated from the follow-up cultures.</p> <p>All patients in the parenterally treated group died. None of the patients receiving colistin by inhalation, and 3 of 9 patients of the combination group eventually died (p = 0.002 and p = 0.03 respectively as compared to the group receiving colistin only parenterally).</p> <p>Conclusions</p> <p>Aerosolized colistin could be beneficial as adjunctive treatment for the management of pneumonia due to MDR <it>P. aeruginosa</it>.</p

    Limited contribution of permafrost carbon to methane release from thawing peatlands

    Get PDF
    Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands

    Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity.</p> <p>Results</p> <p>Our results suggest that the kinase domain of Ire1 initially binds cofactors without activation of the RNase domain. RNase is activated upon a subsequent conformational rearrangement of Ire1 governed by the chemical properties of bound cofactors. The conformational step can be selectively inhibited by chemical perturbations of cofactors. Substitution of a single oxygen atom in the terminal β-phosphate group of a potent cofactor ADP by sulfur results in ADPβS, a cofactor that binds to Ire1 as well as to ADP but does not activate RNase. RNase activity can be rescued by thiophilic metal ions such as Mn<sup>2+ </sup>and Cd<sup>2+</sup>, revealing a functional metal ion-phosphate interaction which controls the conformation and RNase activity of the Ire1 ADP complex. Mutagenesis of the kinase domain suggests that this rearrangement involves movement of the αC-helix, which is generally conserved among protein kinases. Using X-ray crystallography, we show that oligomerization of Ire1 is sufficient for placing the αC-helix in the active, cofactor-bound-like conformation, even in the absence of cofactors.</p> <p>Conclusions</p> <p>Our structural and biochemical evidence converges on a model that the cofactor-induced conformational change in Ire1 is coupled to oligomerization of the receptor, which, in turn, activates RNase. The data reveal that cofactor-Ire1 interactions occur in two independent steps: binding of a cofactor to Ire1 and subsequent rearrangement of Ire1 resulting in its self-association. The pronounced allosteric effect of cofactors on protein-protein interactions involving Ire1's kinase domain suggests that protein kinases and pseudokinases encoded in metazoan genomes may use ATP pocket-binding ligands similarly to exert signaling roles other than phosphoryl transfer.</p

    Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function

    Get PDF
    Background: Influenza virus is a major cause of respiratory disease worldwide and Streptococcus pneumoniae infection associated with influenza often leads to severe complications. Dendritic cells are key antigen presenting cells but its role in such co-infection is unclear.Methods: In this study, human monocyte derived-dentritic cells were either concurrently or successively challenged with the combination of live influenza virus and heat killed pneumococcus to mimic the viral pneumococcal infection. Dendritic cell viability, phenotypic maturation and cytokine production were then examined.Results: The challenge of influenza virus and pneumococcus altered dendritic cell functions dependent on the time interval between the successive challenge of influenza virus and pneumococcus, as well as the doses of pneumococcus. When dendritic cells were exposed to pneumococcus at 6 hr, but not 0 hr nor 24 hr after influenza virus infection, both virus and pneumococcus treated dendritic cells had greater cell apoptosis and expressed higher CD83 and CD86 than dendritic cells infected with influenza virus alone. Dendritic cells produced pro-inflammatory cytokines: TNF-α, IL-12 and IFN-γ synergistically to the successive viral and pneumococcal challenge. Whereas prior influenza virus infection suppressed the IL-10 response independent of the timing of the subsequent pneumococcal stimulation.Conclusions: Our results demonstrated that successive challenge of dendritic cells with influenza virus and pneumococcus resulted in synergistic up-regulation of pro-inflammatory cytokines with simultaneous down-regulation of anti-inflammatory cytokine, which may explain the immuno-pathogenesis of this important co-infection. © 2011 Wu et al; licensee BioMed Central Ltd.published_or_final_versio

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium

    Get PDF
    Background The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. Methods For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. Findings Overall, 116 841 cases were analysed: 76 481 in 2018–19, before the pandemic, and 40 360 in 2020–21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66) and N meningitidis (0·26; 0·21–0·31), while no significant changes were observed for S agalactiae (1·02; 0·75–1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145–55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. Interpretation COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. Funding Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
    corecore