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Abstract  51 

Streptococcus (S.) agalactiae is a leading cause of morbidity and mortality among neonates 52 

and causes severe infections in pregnant women and nonpregnant predisposed adults, as well 53 

as various animal species worldwide. Still, information on the population structure of S. 54 

agalactiae and the geographical distribution of different clones is limited. Further data is 55 

urgently needed to identify particularly successful clones and obtain insights into possible 56 

routes of transmission within one host species and across species borders. We aimed to 57 

determine the population structure and virulence gene profiles of S. agalactiae strains from a 58 

diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates 59 

obtained from humans and animals from five different continents were typed by DNA 60 

microarray profiling. A total of 242 different S. agalactiae strains were identified and further 61 

analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were 62 

identified that were spread across different continents and/or were present in more than one 63 

host species. In particular, several strains were detected both in humans and cattle, and several 64 

canine strains were also detected in samples from human, bovine, and porcine hosts. The 65 

findings of our study suggest that while S. agalactiae is well adapted to various hosts 66 

including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and 67 

occurs between humans and cows, dogs, and rabbits. The presented virulence and resistance 68 

gene profiles enable new insights into interspecies transmission and make a crucial 69 

contribution in the identification of suitable targets for therapeutic agents and vaccines.  70 

 71 

 72 

Keywords: genotype B Streptococci, GBS, transmission, capsular serotype, resistance, 73 

clonality 74 
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Introduction 75 

  Streptococcus (S.) agalactiae, also known as group B Streptococcus (GBS), emerged 76 

in the 1970s as a major cause of morbidity and mortality in neonates and pregnant women. 77 

The organism leads to meningitis and septicemia in newborns and severe peripartum 78 

complications in pregnant women [1]. S. agalactiae has been linked to disease in the elderly 79 

and in nonpregnant adults suffering from chronic diseases [2,3]. The organism is also 80 

commonly found in food [4] and there are some indications for foodborne/ feedborne 81 

transmission [5–7]. In spite of numerous eradication programs, S. agalactiae is still a common 82 

cause of bovine intramammary infections in many countries [8], with particularly high herd 83 

prevalence levels in countries with emerging dairy industries [9]. 84 

Capsular polysaccharide (CPS) was recognized as a major virulence factor of S. 85 

agalactiae and plays an important role in the evasion of host defence mechanisms. CPS has 86 

also been used to type GBS and assign isolates to distinct CPS serotypes (Ia, Ib, and II to IX), 87 

with serotypes Ia, Ib, II, III and V being highly prevalent in human invasive GBS isolates in 88 

many regions of the world [10–12]. Vaccines combining these serotypes can be highly 89 

effective, they fail however to offer protection against other GBS serotypes, which cause the 90 

majority of GBS infections in some regions of the world such as Japan [11,12]. 91 

GBS strains can harbour a wide range of genes encoding virulence factors such as Bac 92 

involved in immune evasion, the alpha-like proteins involved in invasion, or the pilus islands, 93 

which play a role in host adaptation and specificity. GBS also frequently exhibit resistance 94 

genes, including genes conferring resistance to macrolide, lincosamide, and tetracycline. 95 

Recently, several studies typing and characterizing S. agalactiae isolates have been published 96 

[13–19] and a tool for rapid GBS typing based on DNA microarray hybridization patterns 97 

(HPs) has been introduced [13]. However, comprehensive information on the population 98 

structure and virulence gene profiles of S. agalactiae and the geographical distribution of 99 
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different clonal lineages is extremely scarce. In particular, comprehensive data on the 100 

population structure and virulence gene profile of isolates from a broad range of host species 101 

is missing. This data would be crucial to obtain further insights into host adaptation, to 102 

identify particularly successful clones, and to determine the geographical distribution of 103 

different clonal lineages. It could also be used to identify suitable targets for vaccines and 104 

antimicrobial agents, and to further elucidate possible routes of transmission.  105 

A prospective cross-sectional cohort study found that exposure to cattle is a predictor 106 

of human colonization with S. agalactiae [20]. Case reports and some GBS typing data 107 

indicate possible transmission not only between human hosts and cows, but also human hosts 108 

and dogs, cats, and crocodiles [21–25]. In addition, experimental studies have evidenced 109 

transmission of bovine and human S. agalactiae strains to fish [26–28]. Still, data on 110 

interspecies transmission is scarce and strain typing studies involving a diverse set of hosts 111 

and geographical areas are missing.  112 

Therefore, here we provide data on the population structure and virulence gene 113 

profiles of S. agalactiae strains isolated from a diverse set of hosts and a wide variety of 114 

geographical areas.  115 

 116 

  117 
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Material and methods 118 

Bacterial isolates  119 

In this study, a total of 373 S. agalactiae isolates from 5 different continents were 120 

analyzed. Countries of origin represented in this study were: Belgium (n = 1), Colombia (n = 121 

86), Costa Rica (n = 1), Germany (n = 109), Honduras (n = 3), Hong Kong SAR, China (n = 122 

30), Kenya (n = 33), Switzerland (n = 103), Thailand (n = 6), Vietnam (n = 1). Isolates 123 

included in this study originated from human hosts (n = 225), cattle (n = 84), dogs (n = 16), 124 

fish (n = 15), mice (n = 11), elephants (n = 7), guinea pigs (n = 3), emerald monitors (n = 3), 125 

rats (n = 2), snakes (n = 2) and one isolate each was collected from a rabbit, a goat, a pig, a 126 

turtle, and a frog. A full summary stating the host species, geographical source, and sample 127 

type is provided as Online Resource 1.  128 

 129 

DNA extraction and DNA microarray  130 

All isolates other than fish isolates were cultivated on 5% sheep blood agar (Oxoid 131 

Limited, Hampshire, UK) and incubated for 48 to 72 hours at 37°C. S. agalactiae isolates 132 

obtained from fish were streaked on both sheep blood agar and Tryptic Soy Agar (Becton 133 

Dickinson), and incubated for 72 hours at 30°C. Subsequent DNA extraction was performed 134 

using a Qiagen DNeasy kit and following the recommendations of the DNA microarray 135 

S.agaType AS-1 kit provider (Alere Technologies, Jena, Germany). As this protocol proved 136 

unsuccessful in fish isolates, these isolates were cultivated in 10 mL Tryptic Soy Broth and/or 137 

10 mL Brain Heart Infusion and incubated at 28°C and at 200 rpm/min for 48h or until 138 

clouding of the broth culture was visible. The following day, cells were harvested by 139 

centrifugation and dissolved in A1 lysis buffer, before transfer to the A2 lysis enhancer 140 

Eppendorf tube, to which 400 U achromopeptidase was added. Subsequent steps were 141 

performed according to the manufacturer`s protocol (Alere Technologies). A ND-100 UV-Vis 142 
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spectrophotometer (NanoDrop Technologies, Wilmington, Germany) was used to measure 143 

DNA concentrations in all samples.  144 

The DNA microarray used in this study provides data on the presence/absence of typing 145 

markers (capsule/pilus-associated genes and alp genes), as well as genes conferring resistance 146 

(resistance to macrolide/ lincosamide antibiotics, tetracycline, heavy metals) or encoding 147 

virulence factors, enzymes and other metabolic functions [13]. Linear PCR amplification and 148 

DNA microarray hybridization, washing steps, and staining were performed as suggested by 149 

the DNA microarray manufacturer. Hybridization patterns and signal intensities were 150 

measured applying an ArrayMate reader (Alere Technologies) and were used for S. agalactiae 151 

species confirmation, assignment to a clonal complex and capsule type, hybridization pattern, 152 

and strain, where possible [13]. 153 

 154 

SplitsTree analysis 155 

Similar to Coombs et al., DNA microarray hybridization profiles were used to 156 

calculate unrooted phylogenetic networks from molecular sequence data [29,30]. Stringent 157 

inclusion criteria were applied to avoid bias. Multiple isolates were considered to represent 158 

the same strain (e.g. S1) if DNA microarray hybridization results were identical for all 159 

positive/negative signals. In these cases, only one S. agalactiae DNA microarray profile was 160 

considered for construction of the SplitsTree and was included in the statistical analysis. This 161 

resulted in a total number of 161 strains from humans, 52 strains from ruminants, 15 strains 162 

from dogs, 8 strains form rodents, 8 strains from fish, and 12 strains from other hosts being 163 

included in the statistical analysis. SplitsTree4 (www.splitstree.org) was used to depict the 164 

degree of similarity of the different S. agalactiae hybridization patterns [31].  165 

 166 

Statistical analysis  167 
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Statistically significant differences (p  0.050) in the distribution of virulence and 168 

resistance genes between isolates from different sources (hosts or host groups) were 169 

determined either by Chi squared test or Fisher’s exact test (in case n < 5) using SPSS 24.0 170 

(IBM Corp., Armonk, NY, USA). 171 

 172 

Results 173 

The 373 GBS isolates included in this study could be assigned to 242 different strains. 174 

Multiple isolates representing the same strain were detected in many host species and across 175 

different countries or continents (see Table 1). We observed particularly high rates of 176 

duplicates assigned to the same strain among murine (64%), piscine (47%), and bovine 177 

isolates (39%). In addition, isolates representing the same S. agalactiae strains were not only 178 

detected multiple times within one host species, but in some cases also across different host 179 

species (see Fig. 1). 180 

We determined pronounced host-specific differences in the frequency of different 181 

clonal complexes (Table 2). In GBS from human hosts, CC19-19 was most prevalent (35%), 182 

followed by CC23 (20%). In contrast, GBS strains isolated from ruminants were most 183 

commonly assigned to CC23 (21%), strains from dogs to CC19-10 (40%), strains from 184 

rodents to CC19-01 (75%), and strains from fish to CC260/261 (75%). Some host-specific 185 

differences were also visible in the prevalence of capsular serotypes (Table 3). While serotype 186 

IB was highly prevalent in GBS strains from fish (63%), it was only rarely detected in isolates 187 

from other hosts. In contrast, serotypes IA, II, III, and V were common in GBS from different 188 

host species. As illustrated in the SplitsTree (see Fig. 2), the S. agalactiae strains investigated 189 

in this study also exhibited highly heterogeneous DNA microarray hybridization profiles. 190 

With the exception of S. agalactiae isolated from fish, no distinct clustering of strains based 191 

on host species, geographical origin, or clonal complex assignment could be observed.  192 
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The prevalence of selected virulence and resistance genes among different host groups 193 

is presented in Table 4. Depending on the host, different combinations and variants of the 194 

pilus island gene clusters were observed. The speM gene encoding exotoxin M was detected 195 

in only one isolate (S209, CC19-19), originating from a recto-vaginal swab from a patient in 196 

China. With regard to the allelic variants of the alpha-like GBS surface proteins, the allele 197 

alp_rib (R4) was significantly more prevalent in strains of human origin than in strains from 198 

all other sources.  The bac gene encoding a GBS surface protein was frequently present in 199 

isolates from dogs. In addition, the genes of the first pilin gene cluster (pilA/B/C-I) were more 200 

common in canine GBS isolates, whereas prevalence was low in fish isolates. In contrast, the 201 

pilA/B/C-2b genes of the second pilin gene cluster were significantly more prevalent in GBS 202 

from fish compared with GBS isolated from humans, dogs, and rodents. The vast majority of 203 

human isolates (94%) harbored scpB, which encodes for C5a peptidase and is used as a 204 

diagnostic marker.  205 

As for genes conferring resistance to antimicrobial agents, the emrB/qacA multidrug 206 

resistance transporter gene was present in all tested strains. The majority of strains also 207 

exhibited tetM, a gene associated with tetracycline resistance, and cadD, involved in cadmium 208 

resistance. Among human and canine strains, we frequently detected merA/R, genes involved 209 

in mercuric resistance. Online Resource 2 provides a comprehensive overview of the 210 

frequency of all virulence and resistance genes detected among the different host groups, as 211 

well as p-values for statistically significant differences. Full DNA microarray hybridization 212 

patterns of all strains are included in Online Resource 3. 213 

 214 

Discussion 215 

To date, data on GBS interspecies transmission is limited. In particular, the zoonotic 216 

potential and the directionality of transmission of GBS infections are poorly understood. 217 
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Experimental studies showed the transmissibility of various bovine and human GBS strains to 218 

fish [26–28] and characterization and genotyping studies suggested occasional transmission 219 

between humans and cattle [23,24]. Very recently, transmission of S. agalactiae through 220 

ingestion of raw fish sushi was reported to have led to severe infections in humans 221 

(Kalimuddin et al., 2017). In addition, cases of GBS infections acquired through contact with 222 

GBS from other host species have been reported: necrotizing fasciitis and endocarditis cases 223 

in humans occurred after a dog [25] and a cat bite [21], respectively, and necrotizing fasciitis 224 

cases in a group of crocodiles were likely of human origin [22].  225 

In our study, isolates from various hosts were assigned to the same strain, suggesting 226 

interspecies transmission. Five GBS strains were detected in at least one bovine and one 227 

human host, and another strain was detected in a human, a bovine, and two canine hosts. In 228 

addition, a canine and a porcine isolate were assigned to the same strain. The relatively high 229 

number of S. agalactiae strains identified in both a sample from a dog and at least one other 230 

host species is particularly striking, considering that only 15 canine strains were included in 231 

this study. However, the data provided in this study does not allow for conclusions regarding 232 

the directionality of transmission. In addition, it needs to be taken into consideration that the 233 

strain collection tested predominantly comprises human and bovine GBS strains originating 234 

from Europe, which may bias results. 235 

Nitschke et al. [13] introduced GBS typing based on DNA microarray hybridization 236 

patterns and provided data on human GBS from Germany and the Caribbean, as well as 237 

bovine GBS from Germany: The most prevalent hybridization patterns detected were HP-01 238 

(CC19-01), HP-30 (CC19-17), HP-35 (CC19-19), and HP-48 (CC23), corresponding to the 239 

whole-genome sequenced reference strains CJB111, COH1, Gottschalk 1003A, and Strain 240 

515, respectively. All four hybridization patterns were also frequently detected in our study, 241 

with HP-01 being linked to the most diverse set of hosts. GBS of HP-01 originated from 242 
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humans (n = 5), cows (n = 3), dogs (n = 2), mice (n = 3), emerald monitors (n = 2), a rat (n = 243 

1), and a snake (n = 1). GBS of HP-30 originated from human hosts (n = 10), a rabbit (n = 1), 244 

a cow (n = 1), and a goat (n = 1). GBS of HP-35 originated from humans (n = 8), a dog (n = 245 

1), and a cow (n = 1), and GBS of HP-48 were detected in human (n = 15), bovine (n = 3), 246 

and canine (n = 2) hosts.   247 

The versatility and wide spread of these strains becomes evident, when considering the hosts 248 

and geographical locations, in which some of the strains investigated in this study were 249 

isolated: S60/S250/S256 (HP-01) was detected in a sample from the skin of a dog in Germany, 250 

as well as in a human vaginal swab from China, and bovine mastitis milk in Germany. 251 

S117/S254 (HP-30) was identified in a sample from a rabbit in Germany, as well as in human 252 

samples in Germany and Colombia. S185/S255 (HP-35) was detected in a sample from the 253 

paw of a dog in Germany, and vaginal swabs from women in Colombia and Switzerland. 254 

This study provides comprehensive data on the occurrence of capsular serotypes 255 

among human and animal GBS isolates. CPS typing data is not only essential for 256 

epidemiological purposes, but is also needed in the development of effective CPS-based 257 

vaccines [11,12,32]. 258 

Among the GBS strains investigated in this study, we frequently detected genes 259 

conferring resistance to antimicrobial agents and heavy metal resistance markers. Genes 260 

associated with macrolide/ clindamycin resistance were exclusively found among GBS from 261 

humans, ruminants, dogs, and a pig. Various recent studies report that 15-21% of GBS strains 262 

isolated from pregnant women or cases of neonatal GBS infections are resistant to macrolide 263 

and/or lincosamide  [33–35]. The high prevalence of tetM detected in our study in human 264 

(76%) and ruminant (48%) strains is consistent with findings of Nitschke and colleagues, 265 

which reported prevalence rates of 78% and 71% in human GBS from Germany and the 266 

Caribbean, as well as 48% in bovine GBS from Germany [13].  267 
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In our study, 40% of the canine strains and 25% of fish strains exhibited bac, while the 268 

gene was only detected in 13% of GBS strains from human origin. The bac gene encodes the 269 

C protein beta antigen (Bac), which is able to simultaneously bind to the Fc fragment of IgA 270 

and the complement regulator factor H, thus likely contributing to immune evasion [32,36]. In 271 

addition, increased Bac expression was reported in invasive strains compared to strains 272 

collected from vaginal carriers [37]. Previous studies have associated bac sequence types with 273 

capsular serotype assignment [37,38]. In contrast to our findings, a study investigating human 274 

GBS from Asia, Australia, Europe, New Zealand, and North America found that bac was 275 

present in 97% of serotype Ib isolates and 37% of serotype II isolates, while being largely 276 

absent in GBS assigned to other serotypes [38].  277 

Low prevalence of the speM gene encoding exotoxin M has been reported among GBS 278 

from human and bovine sources [13]. This is consistent with our findings. In this study, we 279 

detected speM in only one isolate (S209, CC19-19) originating from a recto-vaginal swab 280 

from a patient in China.  281 

In our study, the alpha-like GBS surface protein allele alp_rib (R4) (= R4, rib) was 282 

significantly more prevalent in strains of human origin than in strains from all other sources. 283 

The alpha-like proteins are chimeras forming mosaic structures on the surface of the organism 284 

[39]. While the function of many alpha-like proteins is still poorly understood, they may act 285 

as invasins mediating adherence to cervical epithelial cells, as well as transmembrane passage 286 

and translocation of the organism [39].  287 

In our study, different hosts were associated with different combinations and allelic 288 

variants of genes of the pilus islands. Each of the three pilus islands (Pl-1, Pl-2a, Pl2b) 289 

encodes one backbone and two ancillary proteins that mediate interactions with host cells. The 290 

pilus islands and their combinations were shown to play an important role in host adaptation 291 

and specificity, as well as disease presentation [40].  292 
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The findings of our study suggest that while S. agalactiae is well adapted to various hosts 293 

including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and 294 

occurs amongst others between humans and cows, dogs, and rabbits. Involvement of a canine 295 

host in interspecies transmission events may be particularly frequent, with the directionality of 296 

transmission still being unclear. The virulence and resistance gene patterns determined in our 297 

study significantly extend the limited current knowledge on interspecies transmission. They 298 

could also be utilized in the identification of suitable targets for therapeutic agents, as well as 299 

vaccines. 300 
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Figure legends 431 

 432 

Fig 1 Interspecies transmission. Several S. agalactiae strains were detected in samples from 433 

more than one host species, indicating interspecies transmission. This figure provides an 434 

overview of the links detected and their frequency.  435 

 436 

Fig 2 SplitsTree. SplitsTree illustrating the degree of similarity of virulence and resistance 437 

gene profiles of S. agalactiae strains from different sources: Human host (pink), ruminant 438 

(green), dog (orange), elephant (grey), fish (blue), rodent/rabbit (yellow), other (purple). 439 

Strains detected in two or more host species are marked by red circles. 440 

  441 
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Tables 442 

 443 

Table 1: Clonal lineages and strains identified in more than one continent and across 444 

multiple host species. In some clonal complexes, strains were isolated more than once, some 445 

of them beyond country borders and from different host species.  446 

Clonal 

complex 

Strain Source Sample Countrya 

CC19-01 S48/S244/S245 Rat (n = 1) Abscess CH 

  Monitor (n = 2) Lung/ kidney/ liver/ intestine DE 

  Mouse (n = 3) Intestine DE 

 S53 Mouse (n = 5) Intestine DE 

 S57/ S249 Snake (n = 2) Liver, skin DE 

  Monitor (n = 1) Liver DE 

 S60/S250/S256 Dog (n = 2) Skin DE 

  Human (n = 4) Vaginal swab HK 

  Bovine (n = 2) Milk DE 

 S61/S251 Rat (n = 1) Trachea DE 

  Mouse (n = 2) Prepuce DE 

 S63 Bovine (n = 4) Milk DE 

 S64 Bovine (n = 3) Milk  DE 

 S65 Bovine (n = 2) Milk  DE 

 S69 Bovine (n = 5) Milk  DE 

 S81 Human (n = 2) Vaginal swab  HK 

 S84 Human (n = 2) Vaginal swab  HK 
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 S92 Human (n = 2) Vaginal swab  HK 

 S102 Human (n = 2) Vaginal swab, abdominal 

tissue 

HK, KY 

CC19-02 S3 Guinea pig (n = 2) Nose, liver DE 

 S7 Bovine (n = 2) Milk DE 

CC19-10 S58/S252 Bovine (n = 1) Organs DE 

  Human (n = 3) Urine, vaginal swab, wound CO, CH, KY 

 S66 Bovine (n = 2) Uterus, milk DE 

 S68 Bovine (n = 3) Milk DE 

 S73 Human (n = 2) Pus, urine CO 

 S85 Human (n = 2) Vaginal swab  HK 

 S90 Tilapia (n = 4) Kidney TH 

 S91 Tilapia (n = 2) Kidney TH, VN 

 S112 Human (n = 2) Urine, blood KY 

CC19-17 S116 Human (n = 4) Mastitis, blood, vaginal swab DE, CO, CH 

 S117/S254 Rabbit (n = 1) Unknown DE 

  Human (n = 4) Vaginal swab, urine  CO, CH 

 S120 Elephant (n = 3) Abscess/ foot DE 

 S126 Bovine (n = 2) Milk DE 

 S152 Human (n = 3) Vaginal swab  HK 

 S153 Human (n = 2) Vaginal swab  CH 

 S157 Human (n = 2) Vaginal swab  CH 

 S169 Human (n = 4) Vaginal swab  CH 

 S175 Human (n = 4) Blood, urine, vaginal swab KY 
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CC19-19 S186/S255 Dog (n = 1) Paw DE 

  Human (n = 4)  Vaginal swab, urine CO, CH 

 S190 Human (n = 2) Urine, vaginal swab CO 

 S193 Human (n = 2) Urine CO 

 S195 Human (n = 3) Urine, vaginal swab CO 

 S197 Human (n = 2) Vaginal swab  CO 

 S198 Human (n = 2) Urine, blood CO 

 S218 Human (n = 2) Vaginal swab  CH 

 S222 Human (n = 2) Vaginal swab CH, KY 

 S227 Human (n = 3) Vaginal swab  CH 

 S235 Human (n = 2) Vaginal swab CH 

 S237 Human (n = 2) Blood, vaginal swab KY, CO 

CC19-67 S5/S243 Dog (n = 1) Skin DE 

  Bovine (n = 1) Milk CH 

 S17 Bovine (n = 4) Milk CO 

 S23 Bovine (n = 2) Milk CH 

CC23 S124/248 Dog (n = 1) Skin DE 

  Pig (n = 1) Milk DE 

 S128 Bovine (n = 2) Milk DE 

 S130 Bovine (n = 2) Milk DE 

 S133 

S134/S253 

Bovine (n = 3) 

Bovine (n = 1)  

Human (n = 3) 

Milk 

Milk 

Urine, vaginal swab 

DE 

DE 

CO, HK 

 S135 Bovine (n = 2) Milk DE 
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 S137 Human (n = 12) Vaginal swab, biopsy, urine, 

blood 

CO, CH, KY 

 S139 Human (n = 3) Urine, blood, secretion CO 

 S141 Human (n = 2) Vaginal swab, urine CO 

 S142 Human (n = 2) Vaginal swab CO 

 S145 Human (n = 3) Vaginal swab  CH, CO 

 S162 Human (n = 3) Vaginal swab CH 

CC103 S11/S247 

 

S14  

Bovine (n = 1) 

Human (n = 1) 

Bovine (n = 5) 

Milk 

Pus 

Milk 

DE 

CO 

DE 

 S16/S246 Bovine (n = 1) Milk DE 

  Human (n = 1) Urine CO 

CC260/261 S31 Tilapia (n = 2) Spleen, kidney HN, CO 

 S32 Tilapia (n = 3) Spleen, kidney HN, CO 

CC298 S19 Bovine (n = 3) Milk CO 

not assigned S10 Bovine (n = 2) Milk DE 

 S18 Bovine (n = 2) Milk CO 

a Country abbreviations: CH = Switzerland, CO = Colombia, DE = Germany, HK = Hong 447 

Kong SAR (China), HN = Honduras, KY = Kenya, TH = Thailand, VN = Vietnam 448 

 449 

 450 

 451 

 452 

 453 
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Table 2. Clonal complex distribution. This table provides an overview of the prevalence of 454 

different clonal complexes among S. agalactiae strains from various hosts (in percent).  455 

 456 

Clonal complex Hosts (% of strains) 

Human 

(n = 161) 

Ruminant 

(n = 52) 

Dog  

(n = 15) 

Rodent  

(n = 8) 

Fish  

(n = 8) 

Other 

(n = 12) 

CC19-01 12 19 13 75 0 25 

CC19-02 4 2 7 25 0 0 

CC19-04 1 0 0 0 0 0 

CC19-10 12 12 40 0 25 17 

CC19-17 10 6 0 0 0 17 

CC19-19 35 4 13 0 0 0 

CC19-22 2 0 0 0 0 0 

CC19-67 1 13 7 0 0 8 

CC23 20 21 20 0 0 33 

CC26 1 0 0 0 0 0 

CC103 2 10 0 0 0 0 

CC130 1 0 0 0 0 0 

CC260/261 0 0 0 0 75 0 

CC298 0 2 0 0 0 0 

not assigned 0 12 0 0 0 0 
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Table 3: Prevalence of capsular serotypes.  457 

 458 

Capsular serotype Hosts (% of strains) 

Human 

(n = 161) 

Ruminant 

(n = 52) 

Dog  

(n = 15) 

Rodent  

(n = 8) 

Fish  

(n = 8) 

Other 

(n = 12) 

IA 16 35 20 0 13 25 

IB 9 8 7 0 63 0 

II 17 19 20 50 0 0 

III 22 21 13 0 13 33 

IV 4 10 13 0 0 0 

V 21 8 20 50 0 25 

VI  1 0 0 0 0 0 

VII 2 0 0 0 0 0 

IX 1 0 0 0 0 0 

negative 2 0 0 0 13 17 

not assignable 5 0 7 0 0 0 
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Table 4. Virulence and resistance genes. Prevalence of selected virulence and resistance genes among GBS strains isolated from different hosts: 

humans, ruminants, dogs, rodents, fish, and other (snake, turtle, frog, elephant, pig, rabbit). A comprehensive list of DNA microarray results including p-

values is provided as Supplementary Table 2. 

Gene Function Host (% of strains) 

  Human 

(n = 161) 

Ruminant  

(n = 52) 

Dog  

(n = 15) 

Rodent 

(n = 8) 

Fish  

(n = 8) 

Other  

(n = 12) 

 

Virulence genes 

speM Exotoxin M 1 0 0 0 0 0 

cylD Beta hemolysin locus 96*F 100*F 100*F 100*F 25*HRDXY 100*F 

cylE Beta hemolysin locus 87*F 94*F 100*F 100*F 25*HRDXY 100*F 

alp_3 Allele of the -like protein/ -antigenic cell wall protein 7*X 10*X 13*X 75*HRDF 0*X 25 

alp_rib (R4) Allele of the -like protein/ -antigenic cell wall protein 52*RXFY 24*H 20 0*H 0*H 9*H 

bac -antigenic cell wall protein 13*D 15 40*H 0 25 8 

pilA1 Pilin gene cluster 1 51 50 80*F 71 25*D 50 
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pilB1 Pilin gene cluster 1 63 48*D 80*RF 75 25*D 50 

pilC1 Pilin gene cluster 1 66 56 80 75 38 50 

pilA2a Pilin gene cluster 2a 81*RFY 52*HDX 87*RF 100*RFY 13*HDX 50*HX 

pilC2a Pilin gene cluster 2a 82*RF 52*HDX 93*RF 100*RF 13*HDX 58 

pilA2b pilin gene cluster 2b 15*RFY 48*HDX 7*RF 0*RF 63*HDX 42*H 

pilB2b Pilin gene cluster 2b 15*RFY 48*HDX 7*RF 0*RF 67*HDX 42*H 

pilC2b Pilin gene cluster 2b 14*RFY 48*HDX 7*RF 0*RF 75*HDX 42*H 

scpB-var1 Complement-inactivating C5a peptidase 94*RDXFY 50*H 67*HF 25*H 13*HD 27*H 

scpB-var2 Complement-inactivating C5a peptidase 94*RDXFY 48*H 67*HF 25*H 13*HD 25*H 

fsb-var3 Allele of a fibrinogen binding protein 61*X 46*X 73*F 100*HRFY 25*DX 33*X 

 

Resistance genes 

cadC Cadmium efflux system accessory protein 21*R 2*H 13 0 0 0 

cadD Cadmium resistance protein 75*F 77*F 93*FY 100*FY 14*HRDX 50*DX 

emrB/qacA Multidrug resistance transporter 100 100 100 100 100 100 

ermA Macrolide/clindamycin resistance 9 2 13 0 0 8 
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ermB Macrolide/clindamycin resistance 19 10 7 0 0 0 

ermC Macrolide/clindamycin resistance 0 0 0 0 0 0 

merA Mercuric reductase 58*RXFY 11*HD 45*R 0*H 13*H 10*H 

merR Mercuric resistance operon regulatory protein 57*RXFY 12*H 33 0*H 13*H 17*H 

tetM Tetracycline resistance 76*RF 48*HD 93*RF 75 25*HD 58 

 

*The distribution of the respective gene differed significantly between strains from the stated hosts (with p ≤ 0.050). Host groups are indicated as follows: 

humans (H), ruminants (R), dogs (D), rodents (X), fish (F), and other (Y). 
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