2,242 research outputs found
Cross-sectional evaluation of a longitudinal consultation skills course at a new UK medical school
Background: Good communication is a crucial element of good clinical care, and it is important to provide appropriate consultation skills teaching in undergraduate medical training to ensure that doctors have the necessary skills to communicate effectively with patients and other key stakeholders. This article aims to provide research evidence of the acceptability of a longitudinal consultation skills strand in an undergraduate medical course, as assessed by a cross-sectional evaluation of students' perceptions of their teaching and learning experiences. Methods: A structured questionnaire was used to collect student views. The questionnaire comprised two parts: 16 closed questions to evaluate content and process of teaching and 5 open-ended questions. Questionnaires were completed at the end of each consultation skills session across all year groups during the 2006-7 academic year (5 sessions in Year 1, 3 in Year 2, 3 in Year 3, 10 in Year 4 and 10 in Year 5). 2519 questionnaires were returned in total. Results: Students rated Tutor Facilitation most favourably, followed by Teaching, then Practice & Feedback, with suitability of the Rooms being most poorly rated. All years listed the following as important aspects they had learnt during the session: • how to structure the consultation • importance of patient-centredness • aspects of professionalism (including recognising own limits, being prepared, generally acting professionally). All years also noted that the sessions had increased their confidence, particularly through practice. Conclusions: Our results suggest that a longitudinal and integrated approach to teaching consultation skills using a well structured model such as Calgary-Cambridge, facilitates and consolidates learning of desired process skills, increases student confidence, encourages integration of process and content, and reinforces appreciation of patient-centredness and professionalism
Treatment delays in paediatric dento-alveolar trauma at a tertiary referral hospital
Background: Paediatric dento-alveolar trauma is a common event. Delays in treatment can have adverse effects on long term outcomes and the aim of this study was to quantify the treatment delays in paediatric dento-alveolar trauma in a tertiary referral hospital. Methods: All cases of paediatric dento-alveolar trauma over a two-year period from July 2000 to June 2002 were identified and the charts were reviewed retrospectively. All children presenting the emergency department with dento-alveolar trauma within 48 hours of injury during the time period were included. Results: Forty-three patients were identified. The average age was 5.51 years, though there was a bias towards one and two year olds. Males were injured 1.5 times more frequently than females. There was an average delay of 9.6 hours between injury and treatment for all patients. Transit time from outside practitioners to hospital and waiting times in hospital made up the greatest delays. Children injured an average of 2.37 teeth and only 14 per cent were uncomplicated crown fractures. Conclusions: Children who present to children's hospitals for treatment of dento-alveolar trauma have more severe injuries than those treated elsewhere. They have large but potentially reducible delays between injury and treatment
Considering national varieties in the temporary staffing industry and institutional change:Evidence from the UK and Germany
The temporary staffing industry has experienced significant growth in recent decades across many countries and sectors. The particular characteristics of the temporary staffing industry are influenced by the national institutional context in which they are embedded. This article presents empirical findings to investigate of the concept of a national temporary staffing industry using two case studies, the UK and Germany. Through analysis of two national markets for temporary staffing the article discusses the importance of investigating the wider institutional environment in which an industry is embedded, the interactions and interdependencies between the actors involved, and the relationships and activities through which an industry is co-created and constituted. Theoretically, this seeks to stress the importance of considering how institutional systems change, rather than focusing on characteristics used to categorise socio-economic systems. Empirically, this article reveals the features and developments of two national temporary staffing industries within Europe. This advances of our understanding of changes in the temporary staffing industry in two European settings, but also highlights the importance of considering geographically specific national varieties of economic systems as dynamic institutional ecologies
Frazil ice formation during the spring flood and its role in transport of sediments to the ice cover
Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins
The impact of childhood vaccines on bacterial carriage in the nasopharynx: a longitudinal study.
BACKGROUND: There is increasing evidence that childhood vaccines have effects that extend beyond their target disease. The objective of this study was to assess the effects of routine childhood vaccines on bacterial carriage in the nasopharynx. METHODS: A cohort of children from rural Gambia was recruited at birth and followed up for one year. Nasopharyngeal swabs were taken immediately after birth, every two weeks for the first six months and then every other month. The presence of bacteria in the nasopharynx (Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus) was compared before and after the administration of DTP-Hib-HepB and measles-yellow fever vaccines. RESULTS: A total of 1,779 nasopharyngeal swabs were collected from 136 children for whom vaccination data were available. The prevalence of bacterial carriage was high: 82.2% S. pneumoniae, 30.6%, S.aureus, 27.8% H. influenzae. Carriage of H. influenzae (OR = 0.36; 95% CI: 0.13, 0.99) and S. pneumoniae (OR = 0.25; 95% CI: 0.07, 0.90) were significantly reduced after measles-yellow fever vaccination; while DTP-Hib-HepB had no effect on bacterial carriage. CONCLUSIONS: Nasopharyngeal bacterial carriage is unaffected by DTP-Hib-HepB vaccination and reduced after measles-yellow fever vaccination
Re-imagining the future:repetition decreases hippocampal involvement in future simulation
Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by “pre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation
TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms
<p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p>
<p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p>
<p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p>
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
