294 research outputs found
Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells
Peer reviewedPublisher PD
Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP
Sleptons, neutralinos and charginos were searched for in the context of
scenarios where the lightest supersymmetric particle is the gravitino. It was
assumed that the stau is the next-to-lightest supersymmetric particle. Data
collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were
analysed combining the methods developed in previous searches at lower
energies. No evidence for the production of these supersymmetric particles was
found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa
Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results: We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions: A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and consistent signal for this second peak in the phylostratigraphic map implies that a complex multi-level selection process has driven the transition to multicellularity
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
The purpose of this study was to test postural control during quiet standing in
nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH)
before and after cancellation of VH; also to compare with healthy subjects with,
and without VH. Fourteen subjects with LBP took part in this study. The postural
performance was measured through the center of pressure displacements with a
force platform while the subjects fixated on a target placed at either 40 or 200
cm, before and after VH cancellation with an appropriate prism. Their postural
performance was compared to that of 14 healthy subjects with VH and 12 without
VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP
subjects, cancellation of VH with a prism improved postural performance. With
respect to control subjects (with or without VH), the variance of speed of the
center of pressure was higher, suggesting more energy was needed to stabilize
their posture in quiet upright stance. Similarly to controls, LBP subjects
showed higher postural sway when they were looking at a target at a far distance
than at a close distance. The most important finding is that LBP subjects with
VH can improve their performance after prism-cancellation of their VH. We
suggest that VH reflects mild conflict between sensory and motor inputs involved
in postural control i.e. a non optimal integration of the various signals. This
could affect the performance of postural control and perhaps lead to pain.
Nonspecific chronic back pain may results from such prolonged conflict
Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)
Publishe
Measurement of Trilinear Gauge Couplings in Collisions at 161 GeV and 172 GeV
Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for couplings () are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the final state in which one decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral couplings from an analysis of the reaction \eegi
Present state and future perspectives of using pluripotent stem cells in toxicology research
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
- …